First,

where
is density,
is mass, and
is volume. We can compute the volume of the roll:


When the roll is unfurled, the aluminum will be a rectangular box (a very thin one), so its volume will be the product of the given area and its thickness
. Note that we're assuming the given area is not the actual total surface area of the aluminum box, but just the area of the largest face (i.e. the area of one side of the unrolled sheet of aluminum).
So we have

where
is the given area, so


If we're taking significant digits into account, the volume we found would have been
, in turn making the thickness
.
The ball may attracted to the magnet.
<h3>How can we understand that the hanging ball will be attracted to the magnet or not?</h3>
- From the question, we understand that the ball is attracted by the north pole of the bar magnet, then the bar magnet flipped over and the south pole is brought near the hanging ball.
- As we know, in this type of experiments of bar magnet most of the times the ball is made out of steel.
- Steel is a magnetic material.
- Magnetic materials gets attracted to the magnet at both the North and South pole.
- This can be compared to how neutral objects also gets attracted to the positively and negatively charged rods through the Polarization force.
So, If the bar magnet is flipped over and the south pole is brought near the hanging ball, The ball will be attracted to the magnet.
Learn more about the bar magnet:
brainly.com/question/27943723
#SPJ4
Answer:
20 mangintiude beacuse
Explanation:
mt everst is in mounatin region we eat rice we eat pizza burger sandwich go to thamel for a good reason doing lamo lamo hw so be obtidnet you 4 kaccha fail boy
Answer:
40,000
Explanation:
Momentum is defined as mass*velocity, so a doubling of velocity means a doubling of momentum
Answer:

Explanation:
We have given given the final angular velocity 
And 
Displacement 
We have to find the angular acceleration 
According to law of motion 
So 

In question we have tell about magnitude only so 