Answer:
The new period of rotation using the new spring would be less than the period of rotation using the original spring
Explanation:
Generally the period of rotation of the mass is mathematically represented as
![T = 2 \pi \sqrt{\frac{I}{k} }](https://tex.z-dn.net/?f=T%20%3D%202%20%5Cpi%20%5Csqrt%7B%5Cfrac%7BI%7D%7Bk%7D%20%7D)
Here I is the moment of inertia of the mass about the rotation axis and k is the spring constant
Now looking at the equation we can tell that T is inversely proportional to the square root of the spring constant which means that for a larger spring constant the time period would be lesser
We can calculate this with the law of conservation of energy. Here we have a food package with a mass m=40 kg, that is in the height h=500 m and all of it's energy is potential. When it is dropped, it's potential energy gets converted into kinetic energy. So we can say that its kinetic and potential energy are equal, because we are neglecting air resistance:
Ek=Ep, where Ek=(1/2)*m*v² and Ep=m*g*h, where m is the mass of the body, g=9.81 m/s² and h is the height of the body.
(1/2)*m*v²=m*g*h, masses cancel out and we get:
(1/2)*v²=g*h, and we multiply by 2 both sides of the equation
v²=2*g*h, and we take the square root to get v:
v=√(2*g*h)
v=99.04 m/s
So the package is moving with the speed of v= 99.04 m/s when it hits the ground.
An applied force<span> is a </span>force<span> that is </span>applied<span> to an object by a person or another object.
An attractive force is a force of an attraction (where object are attracted by each other). Gravitation is an example of attractive force.
</span>Normal force<span> is the component, perpendicular to the surface (surface being a plane) of contact.
</span><span>The softball experiences an applied force as a result of Amy’s throw. As the ball moves, it experiences attractive force from the air it passes through. It also experiences a downward pull because of the normal force.
Solution A.</span>
Answer:
Sensory transduction
Explanation:
The term sensory transduction refers to the conversion process where the sensory energy is converted in order to change the potential of a membrane.
In other words, it can defined as the process of energy conversion such that stimulus can be transmitted or received by the sensory receptors and the nervous system may initiate with the sensory receptors.
Transduction takes in all of the five receptors of the body. Thus skin is also one of the receptors and hence conversion of heat energy into impulses takes place with the help of thermo-sensory neuron.
Answer:
1.125m/s^2
Explanation:
Since acceleration is defined as the rate of change in velocity with respect to time. Mathematically
v^2= u^2+2as
Where a,v,u and s are the acceleration, final velocity, initial velocity and distance respectively.
a = ?
u = 0m/s
v = 15m/s
s = 100m
Substituting the values into the formula above
v^2= u^2+2as
15^2=0^2+2×a×100
225= 0+200a
225= 200a
Divide both sides by 200
225/200 = 200a/200
a= 1.125m/s^2
Hence the acceleration of the car is 1.125m/s^2.
Note that the car accelerated uniformly from rest, that was why the initial velocity was 0m/s