Answer: A car initially traveling at 60 km/h accelerates at a constant rate of 2.0 m/s2. A spaceship far from any star or planet accelerates uniformly from 72 m/s to 160 m/s .
Explanation: i hoped that helped you.
Answer: The energy incident on the solar panel during that day is
.
Explanation:
Given: Mass = 250 kg
Initial temperature = 
Final temperature = 
Specific heat capacity = 4200 
Formula used to calculate the energy is as follows.

where,
q = heat energy
m = mass of substance
C = specific heat capacity
= initial temperature
= final temperature
Substitute the values into above formula as follows.

As it is given that water absorbs 25% of the energy incident on the solar panel. Hence, energy incident on the solar panel can be calculated as follows.

Thus, we can conclude that the energy incident on the solar panel during that day is
.
Answer:
3. both are true.
Explanation:
Energy increses with decrease in wavelenght.
For photoemission to occur, a threshold energy barrier must be broken.
Higher energy means more electrons will be emmited.
The electrons emmited will posses energy that is less than the incident energy by the value of the threshold energy.
So the higher the energy, the higher the energy possessed by the electrons.
The answer is
C. They have all ready achieved high levels of cardio respiratory fitness.