<h2>
Answer: zero (0)</h2>
Explanation:
The orbit of a body around another in space, is described by six orbital elements that determine its orientation, position, size and shape.
In the specific case of the shape of the orbit, this is determined by its <u>eccentricity</u>, which varies between 0 and 1 in the case of closed orbits (circle and ellipse). When the eccentricity is 0, the shape of the orbit is circular, when this value begins to vary until approaching 1 (without reaching 1), the shape of the orbit becomes more elliptical.
In this sense, a circular orbit will have an eccentriciy of zero.
Because their is nothing at the geographical poles that attracts the magnet
Answer:
A semiconductor acts like an ideal insulator at absolute zero temperature that is at zero kelvin. It is because the free electrons in the valence band of semiconductors will not carry enough thermal energy to overcome the forbidden energy gap at absolute zero.
F = ma
500 = m x 15
m = 33.33 kg
Answer:
Sound waves travel faster in a low-density gas
Explanation:
First of all, let's remind that sound waves are pressure waves: they consist of oscillations of the particles in a medium, which oscillate back and forth along the direction of motion of the wave (longitudinal wave).
The speed of sound in an ideal gas is given by the equation

where
is the adiabatic index of the gas
p is the gas pressure
is the gas density
From the equation, we see that the speed of sound is inversely proportional to the square root of the density: therefore, the lower the density, the faster the sound waves.
So, sound waves will travel faster in a low-density gas.