The experiments will involve two billiard balls of known masses, m₁ and m₂, and velocities u₁ and u₂. The two are allowed to collide and the velocities of the balls after the collision v₁ and v₂ are recorded.
The momentum before and after the collision is then calculated as follows:
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
<h3>What is the statement of the law of conservation of momentum?</h3>
The law of the conservation of momentum states that the momentum before and after collision in a system of colliding bodies is conserved
The momentum of a body is calculated using the formula below:
Momentum = mass * velocity.
Hence, for the two billiard balls, the momentum before and after the collision is conserved.
Learn more about momentum at: brainly.com/question/1042017
#SPJ1
Answer:
The magnitude and direction of the acceleration of the particle is 
Explanation:
Given that,
Mass 
Velocity 
Charge 
Magnetic field 
We need to calculate the acceleration of the particle
Formula of the acceleration is defined as


We need to calculate the value of 


Now, put the all values into the acceleration 's formula


Negative sign shows the opposite direction.
Hence, The magnitude and direction of the acceleration of the particle is 
The main activity that is involved in studying of physics is the study of natural laws. The study of physics has to do with many aspects of the universe. Physics majorly looks into the natural laws that operate in the universe and describe how they affect matter in relation to time.
The formula for potential energy is
E(p) = mgh
(Mass x gravity x height)
Therefore energy = (5.3)(9.8)(6.6)
= 342.8 J
How did I get 9.8?
9.8 is the constant for gravity