Answer:
Any of the answers given will work
Explanation:
I literally just did it.
Assuming you meant cation and not action, gallium would most likely form a cation because it is a group A element
Answer : The half life of 28-Mg in hours is, 6.94
Explanation :
First we have to calculate the rate constant.
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = time passed by the sample = 48.0 hr
a = initial amount of the reactant disintegrate = 53500
a - x = amount left after decay process disintegrate = 53500 - 10980 = 42520
Now put all the given values in above equation, we get


Now we have to calculate the half-life.



Therefore, the half life of 28-Mg in hours is, 6.94
Your question isn't quite clear, but if you're wondering if a chemical is polar or non-polar, you simply draw a VSEPR sketch and draw arrows where the bonds are. Only draw arrows between atoms, NOT between an atom and a lone pair of electrons. The arrow should point to the most electronegative atom (you should be given an electronegativity scale). Afterwards, you add up the arrows as vectors, and look at the sum of the vectors. If the sum is zero (CH4 is a good example), the chemical is non-polar. If the sum is a vector, the chemical is polar (H2O, or water, is polar).
Answer:
- <em>He realized that some elements had not been discovered.</em>
Explanation:
Some scientists that tried to arrange the list of elements known before Mendeleev include Antoine Lavoisier, Johann Döbereiner, Alexandre Béguyer de Chancourtois, John Newlands, and Julius Lothar Meyer.
<em>Dimitri Mendeleev</em> was so succesful that he is recognized as the most important in such work.
Mendeleev by writing the properties of the elements on cards elaborated by him, and "playing" trying to order them, realized that, some properties regularly (periodically) repeated.
The elements were sorted in increasing atomic weight (which is not the actual order in the periodic table), but when an element did not meet the pattern discovered, he moved it to a position were its properties fitted.
The amazing creativity of Mendeleev led him to leave blanks for what he thought were places that should be occupied by elements yet undiscovered. More amazing is that he was able to predict the properties of some of those elements.
When years after some of the elements were discovered, the genius of Mendeleev was proven because the "new" elements had the properties predicted by him.