The new pH is 7.69.
According to Hendersen Hasselbach equation;
The Henderson Hasselbalch equation is an approximate equation that shows the relationship between the pH or pOH of a solution and the pKa or pKb and the ratio of the concentrations of the dissociated chemical species. To calculate the pH of the buffer solution made by mixing salt and weak acid/base. It is used to calculate the pKa value. Prepare buffer solution of needed pH.
pH = pKa + log10 ([A–]/[HA])
Here, 100 mL of 0.10 m TRIS buffer pH 8.3
pka = 8.3
0.005 mol of TRIS.
∴ ![8.3 = 8.3 + log \frac{[0.005]}{[0.005]}](https://tex.z-dn.net/?f=8.3%20%3D%208.3%20%2B%20log%20%5Cfrac%7B%5B0.005%5D%7D%7B%5B0.005%5D%7D)
<em> </em>inverse log 0 = ![\frac{[B]}{[A]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
![\frac{[B]}{[A]} = 1](https://tex.z-dn.net/?f=%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D%20%3D%201)
Given; 3.0 ml of 1.0 m hcl.
pka = 8.3
0.003 mol of HCL.
![pH = 8.3 + log \frac{[0.005-0.003]}{[0.005+0.003]}\\pH = 8.3 + log \frac{[0.002]}{[0.008]}\\\\pH = 8.3 + log {0.25}\\\\pH = 8.3 + (-0.62)\\pH = 7.69](https://tex.z-dn.net/?f=pH%20%3D%208.3%20%2B%20log%20%5Cfrac%7B%5B0.005-0.003%5D%7D%7B%5B0.005%2B0.003%5D%7D%5C%5CpH%20%3D%208.3%20%2B%20log%20%5Cfrac%7B%5B0.002%5D%7D%7B%5B0.008%5D%7D%5C%5C%5C%5CpH%20%3D%208.3%20%2B%20log%20%7B0.25%7D%5C%5C%5C%5CpH%20%3D%208.3%20%2B%20%28-0.62%29%5C%5CpH%20%3D%207.69)
Therefore, the new pH is 7.69.
Learn more about pH here:
brainly.com/question/24595796
#SPJ1
Answer:
0.99 kg O₂
1.9 kg SO₂
Explanation:
Let's consider the reaction between sulfur and oxygen to form sulfur dioxide.
S + O₂ → SO₂
The mass ratio of S to O₂ is 32.07:32.00. The mass of oxygen required to react with 1 kg of sulfur is:
1 kg S × (32.00 kg O₂/32.07 kg S) = 0.998 kg O₂
The mass ratio of S to SO₂ is 32.07:64.07. The mass of sulfur dioxide formed when 1 kg of sulfur is burned is:
1 kg S × (64.07 kg SO₂/32.07 kg S) = 1.99 kg SO₂
Energy can not be created and cannot be destroyed
<span />
2.5 moles of silver is 269.6705 grams
Each column is called a group<span>. The elements in each </span>group have<span> the same number of electrons in the outer orbital. Those outer electrons are also called valence electrons.</span>