1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
3 years ago
5

If a bicyclist has a mass of 70 KG and a velocity of 25M/S, what is the momentum of the bicyclist?

Physics
1 answer:
ArbitrLikvidat [17]3 years ago
4 0

Answer:

1750 kgm/s

Explanation:

The equation for momentum is p = mv = 70 * 25 = 1750.

You might be interested in
Suppose that the acceleration of a model rocket is proportional to the difference between 100 ft/sec and the rocket's velocity.
sp2606 [1]

Answer:

Explanation:

initial velocity, u = 0

final velocity, v = 80 ft/s

acceleration, a = 150 ft/s²

Let the time taken is t.

v = u + at

80 = 0 + 150 x t

t = 0.53 second

3 0
3 years ago
Two resistors, A and B, are connected in series to a 6.0 V battery. A voltmeter connected across resistor A measures a potential
mestny [16]

Answer:

Resistance of resistor A = 6.0 Ω and resistance of resistor B = 3.0 Ω

Explanation:

When the two resistors are in series, let V₁ = voltage in resistor A and R₁ = resistance of resistor A and V₂ = voltage in resistor B and R₂ = resistance of resistor B.

Given that V₁ + V₂ = 6.0 V and V₁ = 4.0 V,

V₂ = 6.0 V - V₁ = 6.0 V - 4.0 V = 2.0 V

Also, let the current in series be I.

So, V₁ = IR₁ and V₂ = IR₂

I = V₁/R₁ and I = V₂/R₂

equating both expressions, we have

V₁/R₁ = V₂/R₂

4.0 V/R₁ = 2.0 V/R₂

dividing through by 2.0 V, we have

2/R₁ = 1/R₂

taking the reciprocal, we have

R₂ = R₁/2

R₁ = 2R₂

From the parallel connection, let V₁ = voltage in resistor A and R₁ = resistance of resistor A and V₂ = voltage in resistor B and R₂ = resistance of resistor B. Since it is parallel, V₁ = V₂ = V = 6.0 V

Also, V₂ = I₂R₂ where I₂ = current in resistor B = 2.0 A and R₂ = resistance of resistor B

So, R₂ = V₂/I₂

= 6.0 V/2.0 A

= 3.0 Ω

R₁ = 2R₂

= 2(3.0 Ω)

= 6.0 Ω

So, resistance of resistor A = 6.0 Ω and resistance of resistor B = 3.0 Ω

6 0
3 years ago
The waves with the lowest energy and lowest frequencies of the electromagnetic spectrum are the
Andru [333]
<span>The waves with the lowest energy and lowest frequencies of the electromagnetic spectrum are the "Radio waves"

So, option B is your answer

Hope this helps!
</span>
5 0
3 years ago
A puck of mass 0.110 kg slides across ice in the positive x-direction with a kinetic friction coefficient between the ice and pu
lara [203]

Answer:

a) Ffr = -0.18 N

b) a= -1.64 m/s2

c) t = 9.2 s

d) x = 68.7 m.

e) W= -12.4 J

f) Pavg = -1.35 W

g) Pinst = -0.72 W

Explanation:

a)

  • While the puck slides across ice, the only force acting in the horizontal direction, is the force of kinetic friction.
  • This force is the horizontal component of the contact force, and opposes to the relative movement between the puck and the ice surface, causing it to slow down until it finally comes to a complete stop.
  • So, this force can be written as follows, indicating with the (-) that opposes to the movement of the object.

       F_{frk} = -\mu_{k} * F_{n} (1)

       where μk is the kinetic friction coefficient, and Fn is the normal force.

  • Since the puck is not accelerated in the vertical direction, and there are only two forces acting on it vertically (the normal force Fn, upward, and  the weight Fg, downward), we conclude that both must be equal and opposite each other:

      F_{n} = F_{g} = m*g (2)

  • We can replace (2) in (1), and substituting μk by its value, to find the value of the kinetic friction force, as follows:

       F_{frk} = -\mu_{k} * F_{n} = -0.167*9.8m/s2*0.11kg = -0.18 N (3)

b)

  • According Newton's 2nd Law, the net force acting on the object is equal to its mass times the acceleration.
  • In this case, this net force is the friction force which we have already found in a).
  • Since mass is an scalar, the acceleration must have the same direction as the force, i.e., points to the left.
  • We can write the expression for a as follows:

        a= \frac{F_{frk}}{m} = \frac{-0.18N}{0.11kg} = -1.64 m/s2  (4)

c)

  • Applying the definition of acceleration, choosing t₀ =0, and that the puck comes to rest, so vf=0, we can write the following equation:

        a = \frac{-v_{o} }{t} (5)

  • Replacing by the values of v₀ = 15 m/s, and a = -1.64 m/s2, we can solve for t, as follows:

       t =\frac{-15m/s}{-1.64m/s2} = 9.2 s (6)

d)

  • From (1), (2), and (3) we can conclude that the friction force is constant, which it means that the acceleration is constant too.
  • So, we can use the following kinematic equation in order to find the displacement before coming to rest:

        v_{f} ^{2} - v_{o} ^{2} = 2*a*\Delta x  (7)

  • Since the puck comes to a stop, vf =0.
  • Replacing in (7) the values of v₀ = 15 m/s, and a= -1.64 m/s2, we can solve for the displacement Δx, as follows:

       \Delta x  = \frac{-v_{o}^{2}}{2*a} =\frac{-(15.0m/s)^{2}}{2*(-1.64m/s2} = 68.7 m  (8)

e)

  • The total work done by the friction force on the object , can be obtained in several ways.
  • One of them is just applying the work-energy theorem, that says that the net work done on the object is equal to the change in the kinetic energy of the same object.
  • Since the final kinetic energy is zero (the object stops), the total work done by friction (which is the only force that does work, because the weight and the normal force are perpendicular to the displacement) can be written as follows:

W_{frk} = \Delta K = K_{f} -K_{o} = 0 -\frac{1}{2}*m*v_{o}^{2} =-0.5*0.11*(15.0m/s)^{2}   = -12.4 J  (9)

f)

  • By definition, the average power is the rate of change of the energy delivered to an object (in J) with respect to time.
  • P_{Avg} = \frac{\Delta E}{\Delta t}  (10)
  • If we choose t₀=0, replacing (9) as ΔE, and (6) as Δt, and we can write the following equation:

       P_{Avg} = \frac{\Delta E}{\Delta t} = \frac{-12.4J}{9.2s} = -1.35 W (11)

g)

  • The instantaneous power can be deducted from (10) as W= F*Δx, so we can write P= F*(Δx/Δt) = F*v (dot product)
  • Since F is constant, the instantaneous power when v=4.0 m/s, can be written as follows:

       P_{inst} =- 0.18 N * 4.0m/s = -0.72 W (12)

7 0
3 years ago
Which type of comb would be best to use in the winter, a plastic comb or a glass comb? Explain using the Triboelectric series.
leonid [27]

Answer:

I'm not sure how to use it using the Series, but it would be the plastic comb

Explanation:

In the winter, it's likely to be cold and the glass would absorb that energy, also making it cold. in order to be able to hold it, you would need something warm, thus making the plastic one the better option as it is less likely to absorb the cold energy

7 0
3 years ago
Other questions:
  • A hot-air balloon is ascending at the rate of 12 m/s and is 80 m above the ground when a package is dropped over the side. (a) H
    14·1 answer
  • use mass and volume dada to calculate the density of lead mass of lead=567.5g volume of lead=50.0cm cubes what is the density?
    13·1 answer
  • Chemical weathering is greatest under conditions of
    6·1 answer
  • As an ice cube melts, its molecules
    9·1 answer
  • What is terminal velocity and when is it reached?
    12·1 answer
  • If a force of 10 N acts on an object and an additional force of 6 N acts on the object in the same direction. What will be the n
    5·2 answers
  • Two cars of the same mass have different velocities. Which car has more momentum?
    7·1 answer
  • With what speed must a ball be thrown directly upward so that it remains in the air for 10 seconds?
    13·1 answer
  • What is the medium through which sound travels inside a bird’s body? (HINT: three-letter word)
    13·1 answer
  • A physicist drives through a stop light. When he is pulled over, he tells the police officer that the Doppler shift made the red
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!