Explanation:
a) Given in the y direction (taking down to be positive):
Δy = 50 m
v₀ = 0 m/s
a = 10 m/s²
Find: t
Δy = v₀ t + ½ at²
50 m = (0 m/s) t + ½ (10 m/s²) t²
t = 3.2 s
b) Given in the x direction:
v₀ = 12 m/s
a = 0 m/s²
t = 3.2 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (12 m/s) (3.2 s) + ½ (0 m/s²) (3.2 s)²
Δx = 38 m
Answer:

Explanation:
<u>The total momentum of a system is defined by:</u>

Where,
is the total momentum or it could be expressed also as
.
and
represents the masses of the objects interacting in the system.
and
are the velocities of the objects of the system.
<em>Remember: </em><em>The momentum is a fundamental physical magnitude of vector type.</em>
We have:


We are going to take the east side as positive, and the west side as negative. Then the velocity of the car B, has to be <u>negative</u>. It goes in a different direction from car A.

Then the total momentum of the system is:

The planet that Punch should travel to in order to weigh 118 lb is Pentune.
<h3 /><h3 /><h3>The given parameters:</h3>
- Weight of Punch on Earth = 236 lb
- Desired weight = 118 lb
The mass of Punch will be constant in every planet;

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

where;
- M is the mass of Earth = 5.972 x 10²⁴ kg
- R is the Radius of Earth = 6,371 km
For Planet Tehar;

For planet Loput:

For planet Cremury:

For Planet Suven:

For Planet Pentune;

For Planet Rams;

The weight Punch on Each Planet at a constant mass is calculated as follows;

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.
<u>The </u><u>complete question</u><u> is below</u>:
Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.
Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).
<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>
Learn more about effect of gravity on weight here: brainly.com/question/3908593
Answer:
1047 miles
Explanation:
The radius of the Earth is
(miles)
So its circumference, which is the total length of the equator, is given by

Now we know that the Earth rotates once every 24 hours. So the distance through which the equator moves in one hour is equal to its total length divided by the number of hours, 24:
