Answer:B
Explanation:
.03 of an hr is 2 mins and if it takes 2 mins to drive 4 miles enter it in pace calulator you are going 120mph so the closest to 120 is 133mph
In that case, there are three possible scenarios:
-- If the braking force is less than the force delivered by the engine,
then the car will continue to accelerate, and the brakes will eventually
overheat and erupt in flame.
-- If the braking force is exactly equal to the force delivered by the engine,
then the car will continue moving at a constant speed, and the brakes will
eventually overheat and erupt in flame.
-- If the braking force is greater than the force delivered by the engine,
then the car will slow down and eventually stop. If it stops soon enough,
then the absorption of kinetic energy by the brakes will end before the
brakes overheat and erupt in flame. Even if the engine is still delivering
force, the brakes can be kept locked in order to keep the car stopped ...
They do not absorb and dissipate any energy when the car is motionless.
<span>The California current on the west coast which runs from north to south and the Gulf Stream on the East coast which runs from south to north.</span>
Answer:
Increase in wavelength of incident wave also increases the spread angle or spread of the interference pattern.
Explanation:
Solution:-
- The diffraction occurs when light bends in the same medium. The bending is the result of light waves "squeezing" through small openings or "curving" around sharp edges.
- Moreover, waves diffract best when the size of the diffraction opening (or grting or groove) corresponds to the size of the wavelength. Hence, light diffracts more through small openings than through larger openings.
- The formula for diffraction shows a direct relationship between the angle of diffraction (theta) and wavelength:
d sin (θ) = m λ
Where,
λ : Wavelength , θ : The spread angle , d : Slit opening or grating
- We can see that the wavelength λ and spread angle θ are related proportionally. So if we increase the wavelength of incident wave we also increase the spread angle or spread of the interference pattern.
<span>
Of course. Wind is air in motion, and the gases in air are composed of
all the usual familiar stuff ... atoms, molecules, mass, etc. That's how
the wind moves things ... it has momentum and kinetic energy, which
get transferred to the things that move in the wind.</span>