<span>The reason that the balloon will stick to the wall is because the negative charges in the balloon will make the electrons in the wall move to the other side of their atoms and this leaves the surface of the wall positively charged.</span>
The circuit change when a wire is added is, an open circuit occurs and makes all bulbs turn off.
<h3>What is a closed circuit?</h3>
A closed circuit is a type of circuit connection in which the wire connection is complete and current flow occurs, turning the light bulbs on in the process.
<h3>What is an open circuit?</h3>
An open circuit is a type of circuit connection in which the wire connection is incomplete and current cannot flow, turning off the light bulbs.
Thus, the circuit change when the wire is added is, an open circuit occurs and makes all bulbs turn off.
Learn more about open circuit here: brainly.com/question/20351910
#SPJ4
Increasing the angle of inclination of the plane decreases the velocity of the block as it leaves the spring.
- The statement that indicates how the relationship between <em>v</em> and <em>x</em> changes is;<u> As </u><u><em>x</em></u><u> increases, </u><u><em>v</em></u><u> increases, but the relationship is no longer linear and the values of </u><u><em>v</em></u><u> will be less for the same value of </u><u><em>x</em></u><u>.</u>
Reasons:
The energy given to the block by the spring = 
According to the principle of conservation of energy, we have;
On a flat plane, energy given to the block =
= kinetic energy of
block = 
Therefore;
0.5·k·x² = 0.5·m·v²
Which gives;
x² ∝ v²
x ∝ v
On a plane inclined at an angle θ, we have;
The energy of the spring = 
- The force of the weight of the block on the string,

The energy given to the block =
= The kinetic energy of block as it leaves the spring = 
Which gives;

Which is of the form;
a·x² - b = c·v²
a·x² + c·v² = b
Where;
a, b, and <em>c</em> are constants
The graph of the equation a·x² + c·v² = b is an ellipse
Therefore;
- As <em>x</em> increases, <em>v</em> increases, however, the value of <em>v</em> obtained will be lesser than the same value of <em>x</em> as when the block is on a flat plane.
<em>Please find attached a drawing related to the question obtained from a similar question online</em>
<em>The possible question options are;</em>
- <em>As x increases, v increases, but the relationship is no longer linear and the values of v will be less for the same value of x</em>
- <em>The relationship is no longer linear and v will be more for the same value of x</em>
- <em>The relationship is still linear, with lesser value of v</em>
- <em>The relationship is still linear, with higher value of v</em>
- <em>The relationship is still linear, but vary inversely, such that as x increases, v decreases</em>
<em />
Learn more here:
brainly.com/question/9134528
The answer would be B.
<span>
Standard deviation basically measures how spread out the values are. Without solving, you can easily tell which one among your choices have a smaller deviation. The closer the values are to each other the smaller the standard deviation. The values of choice B are the closest together, so you can assume that they have the smallest standard deviation. </span>
Answer:
970 kN
Explanation:
The length of the block = 70 mm
The cross section of the block = 50 mm by 10 mm
The tension force applies to the 50 mm by 10 mm face, F₁ = 60 kN
The compression force applied to the 70 mm by 10 mm face, F₂ = 110 kN
By volumetric stress, we have that for there to be no change in volume, the total pressure applied by the given applied forces should be equal to the pressure removed by the added applied force
The pressure due to the force F₁ = 60 kN/(50 mm × 10 mm) = 120 MPa
The pressure due to the force F₂ = 110 kN/(70 mm × 10 mm) = 157.142857 MPa
The total pressure applied to the block, P = 120 MPa + 157.142857 MPa = 277.142857 MPa
The required force, F₃ = 277.142857 MPa × (70 mm × 50 mm) = 970 kN