Well, first of all, a car moving around a circular curve is not moving
with uniform velocity. The direction of motion is part of velocity, and
the direction is constantly changing on a curve.
The centripetal force that keeps an object moving in a circle is
Force = (mass of the object) · (speed)² / (radius of the circle)
F = m s² / r
We want to know the radius, to rearrange the formula to give us
the radius as a function of everything else.
F = m s² / r
Multiply each side by 'r': F· r = m · s²
Divide each side by 'F': r = m · s² / F
We know all the numbers on the right side,
so we can pluggum in:
r = m · s² / F
r = (1200 kg) · (20 m/s)² / (6000 N) .
I'm pretty sure you can finish it up from here.
You can use map and notice one thinh. If you flipp over the edges of continents and put them together, you will get a big single continent that is called pangaea. Practically it's impossible but it could be imagined.
Let's look at Newton's second law
Force is directly proportional towards mass
If mass is more force will be more.
Between baseball and bowling ball Bowling ball has higher mass
So it would expert most force
Option D
The charged particles are often deflated in a magnetic field.
<h3>What is a magnetic field?</h3>
The term charge refers to a positive or negative entity. The can be created when a charge is made to pass through a conductor in a magnetic field.
A magnetic field is created when we have a north pole and a south pole. The charged particles could be made to pass through the electric field and when that happens, we can see a pattern a shown in the image attached.
Thus, we can see that the charged particles are often deflated in a magnetic field.
Learn more about magnetic field:brainly.com/question/23096032
#SPJ1
Centre of Mass then axis of rotation and then moment of inertia. This was the toughest question for your level... happy to help ^_^. It was purely experimental question.