Answer:
Explanation:
Moving a magnet might cause a change in the magnetic field going through the solenoid. Whether or not it will change depends on the movement.
According to Faraday's law of induction a voltage is induced in a coil by a change in the magnetic flux. Magnetic flux is defined as the dot product of the magnetic field (a vector field) by the area enclosed by a loop of the coil.

The voltage is induced by the variation of the magnetic flux:

Where
ε: electromotive fore
N: number of turns in the coil
ΦB: magnetic flux
Moving the magnet faster would increase the rare of change of the magnetic flux, resulting in higher induced voltage.
Turning the magnet upside down would invert the direction of the magnetic field, reversing the voltage induced.
m =dm ______ 10.000
Meters
The metre is a unit of length in the metric system, and is the base unit of length in the International System of Units (SI).
As the base unit of length in the SI and other m.k.s. systems (based around metres, kilograms and seconds) the metres is used to help derive other units of measurement such as the newton, for force.
Let the cold water go up x degrees.
Let the hot water go down 100 - x degrees.
The formula for heat exchange is m*c*delta t
Givens
Ice
deltat = x
m = 0.50 kg
c = 4.18
Hot water
deltat = 100 - x
m = 1.5 kg
c = 4.18
Formula
The heat up = heat down
0.50 * c * x = 1.5 * c * (100 - x) Divide both sides by c
Solution
0.50 *x = 1.5*(100 - x) Remove the brackets.
0.5x = 150 - 1.5x Add 1.5x to both sides.
0.5x + 1.5x = 150 - 1.5x + 1.5x Combine like terms
2x = 150 Divide by 2
x = 75
Answer
A
- Initial velocity (u) = 0 m/s [the car was at rest]
- Distance (s) = 80 m
- Time (t) = 10 s
- Let the magnitude of acceleration be a.
- By using the equation of motion,
we get,
<u>A</u><u>nswer:</u>
<u>The </u><u>magnitude</u><u> </u><u>of </u><u>its </u><u>acceleration</u><u> </u><u>is </u><u>1</u><u>.</u><u>6</u><u> </u><u>m/</u><u>s^</u><u>2</u><u>.</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.