1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir [108]
3 years ago
10

I need help can someone help me pls

Physics
2 answers:
fenix001 [56]3 years ago
5 0
Copper that is the answer
pychu [463]3 years ago
4 0

Answer:

copper

Explanation:

You might be interested in
What is salinity ? ..​
AveGali [126]

Answer:

<h3>Salinity is the saltiness or amount of salt dissolved in a body of water, called saline water. It is usually measured in g/L or g/kg. </h3>
7 0
3 years ago
Read 2 more answers
A water bath in a physical chemistry lab is 1.55 m long, 0.710 m wide, and 0.570 m deep (high). If it is filled to within 3.55 i
Lesechka [4]

Answer:

528 liter.

Explanation:

Volume of the tank(cuboid) = l*b*h

But volume of the water = l*b*h

Where

l= length of the tank

b = width of the tank

h = the length from the bottom of the tank,

3.55 in to m,

0.09017m

Length of the water in the tank = 0.570 - 0.09017

= 0.47983 m.

Volume = 0.47983*0.710*1.55

= 0.528 m3.

1 m3 = 1000 liter.

0.528 m3 = 0.528*1000

= 528 liter

7 0
3 years ago
A roller coaster car rapidly picks up speed as it rolls down a slope as it starts down the slope its speed is 4m/s but 3 seconds
Gwar [14]

Answer:

The acceleration is 6 [m/s^2]

Explanation:

We can find the acceleration of the roller coaster using the kinematic equation for uniformly accelerated motion.

v_{f} =v_{i} + a*t\\where:\\v_{f} = final velocity = 22 [m/s]\\v_{i} = initial velocity = 4 [m/s]\\t = time = 3 [s]\\

Now replacing the values we have:

a=\frac{v_{f} - v_{i} }{t} \\a=\frac{22 - 4 }{3}\\a = 6 [m/s^{2} ]

3 0
3 years ago
Light propagate faster through medium “a” than medium “b”
dangina [55]

1) Medium "b" has more optical density

2) Light must hit the interface between the two mediums perpendicularly

Explanation:

1)

Refraction occurs when light propagates from a medium into a second medium.

The optical density of a medium is given by its index of refraction, which is defined as:

n=\frac{c}{v}

where

c is the speed of light in a vacuum

v is the speed of light in a medium

Higher index of refraction means higher optical density, and light propagater slower into a medium with higher optical density.

In this problem, light propagates faster through medium "a" than medium "b": this means that medium "a" has lower refractive index of medium "b", and so "b" has more optical density.

2)

We can answer this part by referring to Snell's law, which gives the relationship between the direction of the incident ray and of the refracted ray when light passes through the interface between two media:

n_1 sin \theta_1 = n_2 sin \theta_2

where

n_1, n_2 are the index of refraction of the two mediums

\theta_1, \theta_2 are the angle of incidence and of refraction (the angle that light makes with the normal to the surface in medium 1 and medium 2)

Here we want the direction of propagation of the light ray not to change: this means that it must be

sin \theta_1 = sin \theta_2 (1)

However, here we have two mediums "a" and "b" with different index of refraction, so

n_1\neq n_2

Therefore the only angle that can satisfy eq.(1) is

\theta_1 = \theta_2 = 0

So, the light must hit the surface perpendicular to the interface between the two mediums.

Learn more about refraction:

brainly.com/question/3183125

brainly.com/question/12370040

#LearnwithBrainly

3 0
3 years ago
Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. sphere B, of mass 1.80 kg is initially to the right of s
anzhelika [568]

A) The velocity of sphere A after the collision is 1.00 m/s to the right

B) The collision is elastic

C) The velocity of sphere C is 2.68 m/s at a direction of -5.2^{\circ}

D) The impulse exerted on C is 4.29 kg m/s at a direction of -5.2^{\circ}

E) The collision is inelastic

F) The velocity of the center of mass of the system is 4.00 m/s to the right

Explanation:

A)

We can solve this part by using the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision:

p_i = p_f\\m_A u_A + m_B u_B = m_A v_A + m_B v_B

m_A = 0.600 kg is the mass of sphere A

u_A = 4.00 m/s is the initial velocity of the sphere A (taking the right as positive direction)

v_A is the final velocity of sphere A

m_B = 1.80 kg is the mass of sphere B

u_B = 2.00 m/s is the initial velocity of the sphere B

v_B = 3.00 m/s is the final velocity of the sphere B

Solving for vA:

v_A = \frac{m_A u_A + m_B u_B - m_B v_B}{m_A}=\frac{(0.600)(4.00)+(1.80)(2.00)-(1.80)(3.00)}{0.600}=1.00 m/s

The sign is positive, so the direction is to the right.

B)

To verify if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

Before the collision:

K_i = \frac{1}{2}m_A u_A^2 + \frac{1}{2}m_B u_B^2 =\frac{1}{2}(0.600)(4.00)^2 + \frac{1}{2}(1.80)(2.00)^2=8.4 J

After the collision:

K_f = \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}(0.600)(1.00)^2 + \frac{1}{2}(1.80)(3.00)^2=8.4 J

The total kinetic energy is conserved: therefore, the collision is elastic.

C)

Now we analyze the collision between sphere B and C. Again, we apply the law of conservation of momentum, but in two dimensions: so, the total momentum must be conserved both on the x- and on the y- direction.

Taking the initial direction of sphere B as positive x-direction, the total momentum before the collision along the x-axis is:

p_x = m_B v_B = (1.80)(3.00)=5.40 kg m/s

While the total momentum along the y-axis is zero:

p_y = 0

We can now write the equations of conservation of momentum along the two directions as follows:

p_x = p'_{Bx} + p'_{Cx}\\0 = p'_{By} + p'_{Cy} (1)

We also know the components of the momentum of B after the collision:

p'_{Bx}=(1.20)(cos 19)=1.13 kg m/s\\p'_{By}=(1.20)(sin 19)=0.39 kg m/s

So substituting into (1), we find the components of the momentum of C after the collision:

p'_{Cx}=p_B - p'_{Bx}=5.40 - 1.13=4.27 kg m/s\\p'_{Cy}=p_C - p'_{Cy}=0-0.39 = -0.39 kg m/s

So the magnitude of the momentum of C is

p'_C = \sqrt{p_{Cx}^2+p_{Cy}^2}=\sqrt{4.27^2+(-0.39)^2}=4.29 kg m/s

Dividing by the mass of C (1.60 kg), we find the magnitude of the velocity:

v_c = \frac{p_C}{m_C}=\frac{4.29}{1.60}=2.68 m/s

And the direction is

\theta=tan^{-1}(\frac{p_y}{p_x})=tan^{-1}(\frac{-0.39}{4.27})=-5.2^{\circ}

D)

The impulse imparted by B to C is equal to the change in momentum of C.

The initial momentum of C is zero, since it was at rest:

p_C = 0

While the final momentum is:

p'_C = 4.29 kg m/s

So the magnitude of the impulse exerted on C is

I=p'_C - p_C = 4.29 - 0 = 4.29 kg m/s

And the direction is the angle between the direction of the final momentum and the direction of the initial momentum: since the initial momentum is zero, the angle is simply equal to the angle of the final momentum, therefore -5.2^{\circ}.

E)

To check if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

The total kinetic energy before the collision is just the kinetic energy of B, since C was at rest:

K_i = \frac{1}{2}m_B u_B^2 = \frac{1}{2}(1.80)(3.00)^2=8.1 J

The total kinetic energy after the collision is the sum of the kinetic energies of B and C:

K_f = \frac{1}{2}m_B v_B^2 + \frac{1}{2}m_C v_C^2 = \frac{1}{2}(1.80)(1.20)^2 + \frac{1}{2}(1.60)(2.68)^2=7.0 J

Since the total kinetic energy is not conserved, the collision is inelastic.

F)

Here we notice that the system is isolated: so there are no external forces acting on the system, and this means the system has no acceleration, according to Newton's second law:

F=Ma

Since F = 0, then a = 0, and so the center of mass of the system moves at constant velocity.

Therefore, the centre of mass after the 2nd collision must be equal to the velocity of the centre of mass before the 1st collision: which is the velocity of the sphere A before the 1st collision (because the other 2 spheres were at rest), so it is simply 4.00 m/s to the right.

Learn more about momentum and collisions:

brainly.com/question/6439920

brainly.com/question/2990238

brainly.com/question/7973509

brainly.com/question/6573742

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • HHHHHEEEELLLPP
    13·2 answers
  • Fill in the blanks below:<br><br> Urgently need help!!!
    14·1 answer
  • A 70.0 kg man jumping from a window lands in an elevated fire rescue net 11.0 m below the window. He momentarily stops when he h
    10·1 answer
  • Recent technological developments like high-resolution satellite imagery and diagnostic positron emission tomography (PET scans)
    5·1 answer
  • During each cycle of operation a refrigerator absorbs 56 cal from the freezer compartment and expels 81 cal tothe room. If one c
    6·1 answer
  • Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled wi
    9·1 answer
  • &gt;<br><br> Which activity will improve your muscle strength
    11·1 answer
  • 1. Which pair of physical quantities consists of two vectors?
    6·2 answers
  • Forces between objects act when the objects are in direct contact or when they are not touching. Can you think of any forces tha
    9·2 answers
  • An automobile is sitting on a hill which is 20 m higher than ground level. Find the mass of the automobile if it contains 362,60
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!