Answer: The mass is 980.6g of Gold.
Explanation:
We begin by looking for the number of moles equivalent to 3.0 x 10^24 gold atoms.
Using the Avogadro's number,
6.02 x 10^23 atoms of gold make up 1 mole of gold.
3.0 x 10^24 atoms would make up: 1 / 6.02 x 10^23 x 3.0 x 10^24 = 4.98moles.
Now that we know the number of moles, we can then look for the mass using the formular:
Moles = mass/ molar mass
4.98 = mass / 196.9 (atomic mass of gold)
Making "mass" the subject of formula : mass = 4.98 x 196.9= 980.6g
The value of log₂(x/4) is 22. Using the properties of the logarithm, the required value is calculated.
<h3>What are the required properties of the logarithm?</h3>
The required logarithm properties are
logₐx = n ⇒ aⁿ = x; and logₐ(xⁿ) = n logₐ(x);
Where a is the base of the logarithm.
<h3>Calculation:</h3>
It is given that,
log₄(x) = 12;
On applying the property logₐx = n ⇒ aⁿ = x; here a = 4;
So,
log₄(x) = 12 ⇒ 4¹² = x
⇒ x = (2²)¹² = 2²⁴
Then, calculating log₂(x/4):
log₂(x/4) = log₂(2²⁴/4)
= log₂(2²⁴/2²)
= log₂(2²⁴ ⁻ ²)
= log₂(2²²)
On applying the property logₐ(xⁿ) = n logₐ(x);
log₂(x/4) = 22 log₂2
We know that logₐa = 1;
So,
log₂(x/4) = 22(1)
∴ log₂(x/4) = 22.
Learn more about the properties of logarithm here:
brainly.com/question/12049968
#SPJ9