1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dominik [7]
3 years ago
14

Calculate the solubilities of the following compounds in a 0.02 M solution of barium nitrate using molar concentrations, first i

gnoring ionic strength and activities.
a. silver iodate
b. barium sulfate
c. Repeat the above calculations using ionic strength and activities.
Chemistry
1 answer:
Law Incorporation [45]3 years ago
7 0

Answer:

a. 1.7 × 10⁻⁴ mol·L⁻¹; b. 5.5 × 10⁻⁹ mol·L⁻¹

c. 2.3 × 10⁻⁴ mol·L⁻¹;    5.5 × 10⁻⁸ mol·L⁻¹

Explanation:

a. Silver iodate

Let s = the molar solubility.  

                     AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq); Ksp = 3.0 × 10⁻⁸

E/mol·L⁻¹:                               s               s

K_{sp} =\text{[Ag$^{+}$][IO$_{3}$$^{-}$]} = s\times s =  s^{2} = 3.0\times 10^{-8}\\s = \sqrt{3.0\times 10^{-8}} \text{ mol/L} = 1.7 \times 10^{-4} \text{ mol/L}

b. Barium sulfate

                     BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq); Ksp = 1.1 × 10⁻¹⁰

I/mol·L⁻¹:                                0.02             0

C/mol·L⁻¹:                                 +s              +s

E/mol·L⁻¹:                            0.02 + s          s

K_{sp} =\text{[Ba$^{2+}$][SO$_{4}$$^{2-}$]} = (0.02 + s) \times s \approx  0.02s = 1.1\times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{0.02} \text{ mol/L} = 5.5 \times 10^{-9} \text{ mol/L}

c. Using ionic strength and activities

(i) Calculate the ionic strength of 0.02 mol·L⁻¹ Ba(NO₃)₂

The formula for ionic strength is  

\mu = \dfrac{1}{2} \sum_{i} {c_{i}z_{i}^{2}}\\\\\mu = \dfrac{1}{2} (\text{[Ba$^{2+}$]}\cdot (2+)^{2} + \text{[NO$_{3}$$^{-}$]}\times(-1)^{2}) = \dfrac{1}{2} (\text{0.02}\times 4 + \text{0.04}\times1)= \dfrac{1}{2} (0.08 + 0.04)\\\\= \dfrac{1}{2} \times0.12 = 0.06

(ii) Silver iodate

a. Calculate the activity coefficients of the ions

\log \gamma = -0.51z^{2}\sqrt{I} = -0.051(1)^{2}\sqrt{0.06} = -0.51\times 0.24 = -0.12\\\gamma = 10^{-0.12} = 0.75

b. Calculate the solubility

AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq)

K_{sp} =\text{[Ag$^{+}$]$\gamma_{Ag^{+}}$[IO$_{3}$$^{-}$]$\gamma_{IO_{3}^{-}}$} = s\times0.75\times s \times 0.75 =0.56s^{2}= 3.0 \times 10^{-8}\\s^{2} = \dfrac{3.0 \times 10^{-8}}{0.56} = 5.3 \times 10^{-8}\\\\s =2.3 \times 10^{-4}\text{ mol/L}

(iii) Barium sulfate

a. Calculate the activity coefficients of the ions

\log \gamma = -0.51z^{2}\sqrt{I} = -0.051(2)^{2}\sqrt{0.06} = -0.51\times16\times 0.24 = -0.50\\\gamma = 10^{-0.50} = 0.32

b. Calculate the solubility

BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq

K_{sp} =\text{[Ba$^{2+}$]$\gamma_{ Ba^{2+}}$[SO$_{4}$$^{2-}$]$\gamma_{ SO_{4}^{2-}}$} = (0.02 + s) \times 0.32\times s\times 0.32 \approx  0.02\times0.10s\\2.0\times 10^{-3}s = 1.1 \times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{2.0 \times 10^{-3}} \text{ mol/L} = 5.5 \times 10^{-8} \text{ mol/L}

You might be interested in
What is the total number of atoms in the formula<br> Ca(ClO3)2?
Contact [7]

Answer:

9 atoms

Explanation:

Ca=1

Cl=2

O=6

add them all

5 0
3 years ago
Read 2 more answers
Materials Visible Uniform Not Visible Non- Uniform State of Matter 1. Sugar and water 2. Oil and water 3. Vinegar and water 4. S
salantis [7]

Answer:

1. Uniform, non visible

2. Visible, non uniform

3. Uniform, non visible

4. Visible, non uniform

5. Visible, non uniform

Explanation:

A heterogeneous mixture is simply any mixture that is not uniform in composition — it's a non-uniform mixture of smaller constituent parts. By contrast, a mixture that is uniform in composition is a homogenous mixture

visible state of matter is when you can easily difference two components of a mixture

non visible is when the state of the matter in the substance is not visible to the eye, it can't be differentiated

4 0
3 years ago
Read 2 more answers
Explain why the process of dissolution can be exothermic or endothermic (heat of solution) with different solutes
RUDIKE [14]

Answer:

The process of dissolving is exothermic when more energy is released when water molecules “bond” to the solute than is used to pull the solute apart. Because more energy is released than is used, the molecules of the solution move faster, making the temperature increase.

Project the image Endothermic Dissolving.

The process of dissolving is endothermic when less energy is released when water molecules “bond” to the solute than is used to pull the solute apart. Because less energy is released than is used, the molecules of the solution move more slowly, making the temperature decrease.

4 0
3 years ago
7. A small stone added to boiling liquids to make them boil more evenly without sudden violent releases of
Rzqust [24]

Answer:

A boiling chip, boiling stone, porous bit or anti-bumping granule is a tiny, unevenly shaped piece of substance added to liquids to make them boil more calmly.

These help in making the liquid boil more easily

8 0
3 years ago
Read 2 more answers
A chemistry graduate student is given 125.mL of a 1.00M benzoic acid HC6H5CO2 solution. Benzoic acid is a weak acid with =Ka×6.3
lubasha [3.4K]

Answer:

53.9 g

Explanation:

When talking about buffers is very common the problem involves the use of the Henderson Hasselbach formula:

pH = pKa + log [A⁻]/[HA]

where  [A⁻] is the concentration of the conjugate base of the weak acid HA, and [HA] is the concentration of the weak acid.

We can calculate pKₐ from the given kₐ ( pKₐ = - log Kₐ ), and from there obtain the ratio  [A⁻]/HA].

Since we know the concentration of HC6H5CO2 and the volume of solution, the moles and mass of KC6H5CO2  can be determined.

So,

4.63 = - log ( 6.3 x 10⁻⁵ ) + log [A⁻]/[HA] = - (-4.20 ) + log [A⁻]/[HA]

⇒ log [A⁻]/[HA]  = 4.63 - 4.20 =  log [A⁻]/[HA]

0.43 = log [A⁻]/[HA]

taking antilogs to both sides of this equation:

10^0.43 =  [A⁻]/[HA] = 2.69

 [A⁻]/ 1.00 M = 2.69 ⇒ [A⁻] = 2.69 M

Molarity is moles per liter of solution, so we can calculate how many moles of  C6H5CO2⁻ the student needs to dissolve  in 125. mL ( 0.125 L ) of a 2.69 M solution:

( 2.69 mol C6H5CO2⁻ / 1L ) x 0.125 L  = 0.34 mol C6H5CO2⁻

The mass will be obtained by multiplying 0.34 mol times molecular weight for KC6H5CO2 ( 160.21 g/mol ):

0.34 mol x 160.21 g/mol = 53.9 g

3 0
3 years ago
Other questions:
  • Which of earths spheres is not included in the phosphorus cycle?
    8·2 answers
  • How many significant figures does 6559.060 have
    15·1 answer
  • A drop of water placed on a smooth, dry surface will form a dome-shaped droplet instead of flowing outward in different directio
    5·2 answers
  • If the reaction below takes place at STP how many L of ammonia (NH3) will be formed if one starts with 3.45 moles of hydrogen an
    5·1 answer
  • The chemical formula for rubies is AI2O3 list the elements that combine to form a ruby and the number of atoms of each element i
    10·1 answer
  • In a hemoglobin molecule, what element is central to all the structures
    7·1 answer
  • Which of the following is most likely to have a crystalline structure? wood rubber glass quartz
    12·2 answers
  • Need help!!!
    14·1 answer
  • Copernicus challenged the way in which people of his time thought about the solar system. How did Copernicus describe the motion
    15·1 answer
  • Which represents the greatest mass of fluorine?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!