Hi there!
We can use the work-energy theorem to solve.
Recall that:

The initial kinetic energy is 0 J because the crate begins from rest, so we can plug in the given values for mass and final velocity:

Now, we can define work:

Now, plug in the values:

Solve for theta:

Answer:
the answer is C
Explanation:
we know this because if you compare the graphs and look at the direction. it isn't always in the explanation or the few sentences they gave you at the top. also, look at the waves, you can see in Davids drawing that it is directly straight up, A and B do not represent that. A isn't even a valid answer. Notice also in A that the arrow is going in the completely different direction than in Davids drawing. B is also going a different direction even though it is only turned a little bit although if it was straight up like Davids drawing then it would most likely be a correct answer. C does have one arrow going a different direction but look at how it has two, showing in which if the waves were to turn then the arrow is still valid
Answer:
I believe its A: Sports biomechanics.
The
sun is a ball of hot gases containing different kinds of elements at different
cores. It has a very high temperature that radiates all throughout the Milky
Way galaxy. The sun has three main parts; photosphere, chromospheres
and corona. The outer core of a star located at the chromospheres contains
mostly of hydrogen. Inside the hydrogen is helium then carbon, oxygen, neon,
magnesium silicon and the inert gas. The photosphere is scattered by the loose electrons in the corona’s plasma.