4x10=40
1/2 x 3 x 6= 9
9x40=360
Answer:
Height = 3v/y² units
StartFraction 3 V Over y squared EndFraction units
Step-by-step explanation:
The volume of a solid right pyramid with a square base is v units3 and the length of the base edge is y units. which expression represents the height of the pyramid? units (3v – y2) units (v – 3y2) units units
Volume of a solid right pyramid = 1/3 × area of the base × height
Volume of a solid right pyramid = v units³
Area of the base = y² unit²
Volume of a solid right pyramid = 1/3 × area of the base × height
v = 1/3 × y² × height
Height = v ÷ 1/3 × y²
= v × 3/1y²
= (v × 3) / y²
= 3v / y²
Height = 3v/y² units
StartFraction 3 V Over y squared EndFraction units
Solution:
The standard equation of a hyperbola is expressed as

Given that the hyperbola has its foci at (0,-15) and (0, 15), this implies that the hyperbola is parallel to the y-axis.
Thus, the equation will be expressed in the form:

The asymptote of n hyperbola is expressed as

Given that the asymptotes are

This implies that

To evaluate the value of h and k,