1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Law Incorporation [45]
3 years ago
13

How does a sound wave's amplitude affect the sound we hear? How does a sound

Physics
2 answers:
damaskus [11]3 years ago
7 0

Answer:

cause we hear differently

Explanation:

murzikaleks [220]3 years ago
5 0

Answer:

As the amplitude of the sound wave increases, the intensity of the sound increases. Sounds with higher intensities are perceived to be louder. Relative sound intensities are often given in units named decibels (dB)

You might be interested in
Calculate the energy transferred by an appliance using mains electricity (230V) if the charge is 150C. Give your answer in kiloj
Otrada [13]

The energy transferred by the appliance using mains electricity is 17.3 KJ

<h3>Data obtained from the question </h3>
  • Potential difference (V) = 230V
  • Charge (Q) = 150 C
  • Energy (E) =?

<h3>How to determine the energy transferred </h3>

The energy transferred can be obtained as follow:

E = ½QV

E = ½ × 150 × 230

E = 75 × 230

E = 17250 J

Divide by 1000 to express in kilojoules

E = 17250 / 1000

E = 17.3 KJ

Learn more about energy stored in a capacitor:

brainly.com/question/14739936

8 0
2 years ago
Name 2 common methods of polymerization.
navik [9.2K]

Answer: Addition polymerization & Condensation polymerization

6 0
3 years ago
MATHPHYS CAN U HELP ME PLEASE
ludmilkaskok [199]

Explanation:

(1) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.041 kg) (2090 J/kg/°C) (0°C − (-11°C)) = 942.59 J

The heat added to melt the ice is:

q = mL = (0.041 kg) (3.33×10⁵ J/kg) = 13,653 J

The heat added to warm the water to 100°C is:

q = mCΔT = (0.041 kg) (4186 J/kg/°C) (100°C − 0°C) = 17,162.6 J

The heat added to evaporate the water is:

q = mL = (0.041 kg) (2.26×10⁶ J/kg) = 92,660 J

The heat added to warm the steam to 115°C is:

q = mCΔT = (0.041 kg) (2010 J/kg/°C) (115°C − 100°C) = 1236.15 J

The total heat needed is:

q = 942.59 J + 13,653 J + 17,162.6 J + 92,660 J + 1236.15 J

q = 125,654.34 J

(2) When the first two are mixed:

m C₁ (T₁ − T) + m C₂ (T₂ − T) = 0

C₁ (T₁ − T) + C₂ (T₂ − T) = 0

C₁ (6 − 11) + C₂ (25 − 11) = 0

-5 C₁ + 14 C₂ = 0

C₁ = 2.8 C₂

When the second and third are mixed:

m C₂ (T₂ − T) + m C₃ (T₃ − T) = 0

C₂ (T₂ − T) + C₃ (T₃ − T) = 0

C₂ (25 − 33) + C₃ (37 − 33) = 0

-8 C₂ + 4 C₃ = 0

C₂ = 0.5 C₃

Substituting:

C₁ = 2.8 (0.5 C₃)

C₁ = 1.4 C₃

When the first and third are mixed:

m C₁ (T₁ − T) + m C₃ (T₃ − T) = 0

C₁ (T₁ − T) + C₃ (T₃ − T) = 0

(1.4 C₃) (6 − T) + C₃ (37 − T) = 0

(1.4) (6 − T) + 37 − T = 0

8.4 − 1.4T + 37 − T = 0

2.4T = 45.4

T = 18.9°C

(3) Heat gained by the ice = heat lost by the tea

mL + mCΔT = -mCΔT

m (3.33×10⁵ J/kg) + m (2090 J/kg/°C) (30.8°C − 0°C) = -(0.176 kg) (4186 J/kg/°C) (30.8°C − 32.8°C)

m (397372 J/kg) = 1473.472 J

m = 0.004 kg

m = 4 g

4 grams of ice is melted and warmed to the final temperature, which leaves 128 grams unmelted.

(4) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.028 kg) (2090 J/kg/°C) (0°C − (-67°C)) = 3920.84 J

The heat added to melt the ice is:

q = mL = (0.028 kg) (3.33×10⁵ J/kg) = 9324 J

The heat added to warm the melted ice to T is:

q = mCΔT = (0.028 kg) (4186 J/kg/°C) (T − 0°C) = (117.208 J/°C) T

The heat removed to cool the water to T is:

q = -mCΔT = -(0.505 kg) (4186 J/kg/°C) (T − 27°C)

q = (2113.93 J/°C) (27°C − T) = 57076.11 J − (2113.93 J/°C) T

The heat removed to cool the copper to T is:

q = -mCΔT = -(0.092 kg) (387 J/kg/°C) (T − 27°C)

q = (35.604 J/°C) (27°C − T) = 961.308 J − (35.604 J/°C) T

Therefore:

3920.84 J + 9324 J + (117.208 J/°C) T = 57076.11 J − (2113.93 J/°C) T + 961.308 J − (35.604 J/°C) T

13244.84 J + (117.208 J/°C) T = 58037.418 J − (2149.534 J/°C) T

(2266.742 J/°C) T = 44792.58 J

T = 19.8°C

(5) Kinetic energy of the hammer = heat absorbed by ice

KE = q

½ mv² = mL

½ (0.8 kg) (0.9 m/s)² = m (80 cal/g × 4.186 J/cal × 1000 g/kg)

m = 9.68×10⁻⁷ kg

m = 9.68×10⁻⁴ g

(6) Heat rate = thermal conductivity × area × temperature difference / thickness

q' = kAΔT / t

q' = (1.09 W/m/°C) (4.5 m × 9 m) (10°C − 4°C) / (0.09 m)

q' = 2943 W

After 10.7 hours, the amount of heat transferred is:

q = (2943 J/s) (10.7 h × 3600 s/h)

q = 1.13×10⁸ J

q = 113 MJ

6 0
3 years ago
You need to determine the density of a ceramic statue. If you suspend it from a spring scale, the scale reads 28.4 NN . If you t
shtirl [24]

Answer:

2491.23 kg/m³

Explanation:

From Archimedes principle,

R.d = weight of object in air/ upthrust in water = density of the object/density of water

⇒ W/U = D/D' ....................... Equation 1

Where W = weight of the ceramic statue, U = upthrust of the ceramic statue in water, D = density of the ceramic statue, D' = density of water.

Making D the subject of the equation,

D = D'(W/U).................... Equation 2

Given: W = 28.4 N, U = lost in weight = weight in air- weight in water

U = 28.4 - 17.0 = 11.4 N,

Constant: D' = 1000 kg/m³.

Substitute into equation 2,

D = 100(28.4/11.4)

D = 2491.23 kg/m³

Hence the density of the ceramic statue = 2491.23 kg/m³

7 0
3 years ago
A 45.2-kg person is on a barrel ride at an amusement park. She stands on a platform with her back to the barrel wall. The 3.74-m
elena-14-01-66 [18.8K]

Answer:

  • <u><em>1,230N</em></u>

Explanation:

<u>1. Name of the variables:</u>

   f:frequency\\\\ \omega:angular\text{ }speed\\\\ a_c:centripetal\text{ }acceleration\\\\ F_c:centripetal\text{ }force\\ \\ m:mass\\ \\ d:diameter\\ \\ r:radius\\ \\ g:gravitational\text{ }acceleration

<u>2. Formulae:</u>

         f=\dfrac{number\text{ }of\text{ }revolutions}{time}

          \omega=2\pi f

          a_c=\omega^2 r

           F_c=m\times a_c

<u>3. Solution (calculations)</u>

       f=\dfrac{1}{1.65s}=0.\overline{60}s^{-1}

       \omega=2\pi\times0.\overline{60}\approx 3.808rad/s

      a_c=(3.808rad/s)^2\times (3.74/2m)=27.12m/s^2

      F_c=45.2kg\times27.12m/s^2=1,225.67N\approx 1,230N

3 0
3 years ago
Other questions:
  • A coil with internal resistance can be modeled as a resistor and an ideal inductor in series. Assume that the coil has an intern
    7·1 answer
  • A projectile is launched straight up. From launch to landing back down takes 8s.
    5·1 answer
  • A blue-light photon has a wavelength of
    7·1 answer
  • The lifting force generated by fluids on immersed objects is known as ____________.
    7·1 answer
  • EZ QUESTION!!!<br> Why are bananas curved?
    6·2 answers
  • !!! HELP!!! HELL GELP HELP HELP
    8·2 answers
  • A series circuit has a current of 3 A. The circuit contains a 12 resistor. What is the voltage of the circuit?
    8·2 answers
  • a 15-kg block is on a frictionless ramp that is inclined at 20° above the horizontal. it is connected by a very light string ove
    7·1 answer
  • Cold air masses tend to originate from: Question 3 options: tropical areas an area where it's wintertime an area where it's summ
    12·2 answers
  • when two resistors are wired in series with a 12 v battery, the current through the battery is 0.31 a. when they are wired in pa
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!