Answer:
<h3>The answer is 53.27 mi/hr</h3>
Explanation:
To find the velocity covered by the car we use the formula

where
d is the distance
t is the time
From the question
d = 554 miles
t = 10.4 hrs
We have

We have the final answer as
<h3>53.27 mi/hr</h3>
Hope this helps you
That would happen at any place where they don't have to
fall through air or anything else.
Examples:
-- on the moon
-- on an asteroid
-- on a comet
-- on Mercury
-- on Earth, in a vacuum chamber with all the air pumped out of it
Hey there!
Alright, it looks like you've got the second question on the top right, but I can't figure out the answer you've got for the first.
Using Newton's Second Law Of Motion, we have:
F = ma
We plug in our values:
F = 5(1)
That would give us 5 Newtons of force.
For the last one:
Even if two balls are given the same acceleration, the determining factor is <em>weight.</em> If a ball is lighter, it needs less acceleration to go faster. If it's larger, it needs more to make it go at that same speed. That's why that 5 newtons makes sense because it's 5 kilograms as opposed to 0.6 kilograms. It's heavier, and needs more force.
Hope this helped!
Answer:
See the explanation below
Explanation:
The speed of sound waves can be calculated using the following equation:
![v_{s}=\sqrt{\frac{E}{ro} } \\where:\\E = Young's modulus [GPa]\\ro = density of the material [kg/m^3]](https://tex.z-dn.net/?f=v_%7Bs%7D%3D%5Csqrt%7B%5Cfrac%7BE%7D%7Bro%7D%20%7D%20%5C%5Cwhere%3A%5C%5CE%20%3D%20Young%27s%20modulus%20%5BGPa%5D%5C%5Cro%20%3D%20density%20of%20the%20material%20%5Bkg%2Fm%5E3%5D)
Let's do the exercise of comparing two materials one denser than the other, as is steel and aluminum
ro_steel = 7500 [kg/m^3]
ro_aluminum = 2700 [kg/m^3]
E_steel = 200 [GPa]
E_aluminum = 70 [GPa]
Now replacing the values in the equation for each material.
![v_{steel}=\sqrt{\frac{200*10^9}{7500}}\\ v_{steel}=5163[m/s]](https://tex.z-dn.net/?f=v_%7Bsteel%7D%3D%5Csqrt%7B%5Cfrac%7B200%2A10%5E9%7D%7B7500%7D%7D%5C%5C%20v_%7Bsteel%7D%3D5163%5Bm%2Fs%5D)
And for the aluminum
![v_{aluminum}=\sqrt{\frac{70*10^9}{2700} }\\ v_{aluminum}=5091.75[m/s]](https://tex.z-dn.net/?f=v_%7Baluminum%7D%3D%5Csqrt%7B%5Cfrac%7B70%2A10%5E9%7D%7B2700%7D%20%7D%5C%5C%20v_%7Baluminum%7D%3D5091.75%5Bm%2Fs%5D)
In this way we can see that sound propagates faster in denser materials.
Answer:
a) increases
Explanation:
The increase in temperature causes the particles to move much faster. This in turn effects the collision rate of the particle which causes the chemical reaction. Thus the rate of chemical reaction increases.
So, we conclude that the rate of a chemical reaction is directly related to temperature. With increase in temperature there is an increase in the reaction rate and vice versa.