Answer:
The chlorine atom (or atoms) is covalently bonded by a shared pair of electrons to the other element.
Explanation:
Answer:
The Barium flame is green because it is a difficult flame to excite, therefore for it to trigger a flame it is necessary that it be too excited for it to occur.
The reddish color of calcium is due to its high volatility and it is sometimes very difficult to differentiate it from strontium.the compression of these elements is due to being able to make them work during combustion
Explanation:
The flame test is a widely used qualitative analysis method to identify the presence of a certain chemical element in a sample. To carry it out you must have a gas burner. Usually a Bunsen burner, since the temperature of the flame is high enough to carry out the experience (a wick burner with an alcohol tank is not useful). The flame temperature of the Bunsen burner must first be adjusted until it is no longer yellowish and has a bluish hue to the body of the flame and a colorless envelope. Then the tip of a clean platinum or nichrome rod (an alloy of nickel and chromium), or failing that of glass, is impregnated with a small amount of the substance to be analyzed and, subsequently, the rod is introduced into the flame, trying to locate the tip in the least colored part of the flame.
The electrons in these will jump to higher levels from the lower levels and immediately (the time that an electron can be in higher levels is of the order of nanoseconds), they will emit energy in all directions in the form of electromagnetic radiation (light) of frequencies characteristics. This is what is called an atomic emission spectrum.
At a macroscopic level, it is observed that the sample, when heated in the flame, will provide a characteristic color to it. For example, if the tip of a rod is impregnated with a drop of Ca2 + solution (the previous notation indicates that it is the calcium ion, that is, the calcium atom that has lost two electrons), the color observed is brick red .
The wrong answers for sure are B and D, I assume the answer is C
Answer:
the proton and the neutron
Explanation:
mass of The proton is approximately 1.6726 × 10^-27 Kg
mass of the electron is approximately 9.109 × 10^-31 Kg
mass of the neutron is approximately 1.6749 × 10^-27 Kg
Here we see that mass of proton and neutron is approximately similar.
_____________________________________________
Lets see what is the mass of these particle IN atm unit
mass of these particles can also be described in form of amu(atomic mass unit)
1 atm is the mass defined as 1/12 th of mass of the carbon-12(c-12) atom.
In terms of unit atm
mass of proton = 1 amu
mass of electron = 5.45 × 10−4 amu
mass of neutron = 1 amu
hence we can say that mass of proton = mass of neutron.
mass of atom is sum of mass of all the neutron and proton in the atom.
Hence, mass of neturon and atom cannot be equal.
This makes option four the neutron and the atom , the wrong choice.
correct answer is the proton and the neutron
therefore, An atom contains one proton , one electron and one neutron then, mass of proton is similar in mass of neutron.
The wheels will be completely used up and it is the limiting reactant in this case.
<h3>What is a limiting reactant?</h3>
The limiting reactant is the reactant that is completely used up in a reaction, and thus determines when the reaction stops.
- 60 breaks will be used for 30 engines and 30 body frame
- 80 wheels will be used for 20 engines and 20 body frame
- 64 headlights will be used for 32 engines and 32 body frame
The wheels will be completely used up and it is the limiting reactant in this case.
Learn more about limiting reactants here: brainly.com/question/14222359
#SPJ1