Missing in your question:
Picture (1)
when its an open- tube manometer and the h = 52 cm.
when the pressure of the atmosphere is equal the pressure of the gas plus the pressure from the mercury column 52 Cm so, we can get the pressure of the gas from this formula:
P(atm) = P(gas) + height (Hg)
∴P(gas) = P(atm) - height (Hg)
= 0.975 - (520/760)
= 0.29 atm
Note: I have divided 520 mm Hg by 760 to convert it to atm
Picture (2)
The pressure of the gas is the pressure experts by the column of mercury and when we have the Height (Hg)= 67mm
So the pressure of the gas =P(atm) + Height (Hg)
= 0.975 + (67/ 760) = 1.06 atm
Picture (3)
As the tube is closed SO here the pressure of the gas is equal the height of the mercury column, and when we have the height (Hg) = 103 mm. so, we can get the P(gas) from this formula:
P(gas) = Height(Hg)
= (103/760) = 0.136 atm
Answer:

Explanation:
Hello,
In this case, it is widely known that for isochoric processes, the change in the enthalpy is computed by:

Whereas the change in the internal energy is computed by:
So we compute the initial and final temperatures for one mole of the ideal gas:

Next, the change in the internal energy, since the volume-constant specific heat could be assumed as ³/₂R:

Then, the volume-pressure product in Joules:

Finally, the change in the enthalpy for the process:

Best regards.
The correct answer is aerobic cellular respiration. This process uses glucose and oxygen as reactants producing six molecules carbon dioxide, 6 molecules water and 30 molecules of ATP which is used directly to produce energy.
This is called a dynamic equilibrium. Therefore, the reaction is constantly going, but the amount of the reactants and products stay the same for they are both reacting at the same rate. So the answer is 4).