Answer:
In the Lewis structure for IF5 you'll need to put a total of 12 valence electrons on the Iodine atom in order to draw the Lewis structure. Remember that Iodine (I) can hold more than eight valence electrons. For the IF5 Lewis structure, calculate the total number of valence electrons for the IF5 molecule
Explanation:
<em> I be knowing hope this helps</em>
The molecular weight of hemoglobin can be calculated using osmotic pressure
Osmotic pressure is a colligative property and it depends on molarity as
πV = nRT
where
π = osmotic pressure
V = volume = 1mL = 0.001 L
n = moles
R = gas constant = 0.0821 L atm / mol K
T = temperature = 25°C = 25 + 273 K = 298 K
Putting values we will get value of moles

we know that

Therefore

Answer:
[OH-] = 6.17 *10^-10
Explanation:
Step 1: Data given
pOH = 9.21
Step 2: Calculate [OH-]
pOH = -log [OH-] = 9.21
[OH-] = 10^-9.21
[OH-] = 6.17 *10^-10
Step 3: Check if it's correct
pOH + pH = 14
[H+]*[OH-] = 10^-14
pH = 14 - 9.21 = 4.79
[H+] = 10^-4.79
[H+] = 1.62 *10^-5
6.17 * 10^-10 * 1.62 * 10^-5 = 1* 10^-14
Answer:
The correct answer is - Frequency is the number of wavelengths, which is measured in hertz.
Explanation:
Frequency is the number of waves that go through a fixed point at a particular time. Hertz is the SI unit for frequency which means that one hertz is equal to a unit number of waver passes in a unit time to a fixed point.
As the frequency of a wave increases which means the number of waves increases in the unit time, the shorter the wavelength will be.
a higher frequency wave has more energy than a lower frequency wave with the same amplitude.