when the apple moves in a horizontal circle, the tension force in the string provides the necessary centripetal force to move in circle. the tension in the string is given as
T=mv²/r
where T = tension force in the string , m = mass of the apple
v = speed of apple , r = radius of circle.
clearly , tension force depends on the square of the speed. hence greater the speed, greater will be the tension force.
at some point , the speed becomes large enough that it makes the tension force in the string becomes greater than the tensile strength of the string. at that point , the string breaks
Answer:
You will hear the note E₆
Explanation:
We know that:
Your speed = 88m/s
Original frequency = 1,046 Hz
Sound speed = 340 m/s
The Doppler effect says that:
Where:
f = original frequency
f' = new frequency
v = velocity of the sound wave
v0 = your velocity
vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.
Replacing the values that we know in the equation we have:
This frequency is close to the note E₆ (1,318.5 Hz)
Answer:
increase.
Explanation:
According to the newton’s second law of motion force is expressed as product of mass and acceleration.
F = m a
If the force acting is constant, then.
m∝
That is if the mass of object increases the acceleration decreases and vice versa. The above equation is used when the force acting on the body is constant.
As the thrust force from the rocket engine is constant throughout there will be a variation in the mass or acceleration.
Thus, it won't stay the same.
As the weight of the car is maximum at the start because of the fuel present in the rocket engine and minimum at the end as the fuel burns throughout the journey of the car. Weight will be minimum at the end and hence acceleration is maximum at the end.
Thus, it won't decrease.
As the acceleration is going from minimum at the start to maximum at the end, therefore it is continuously increases throughout its journey.
Thus, it will increase.
Several short trips taken from a cold start can use ...twice... as much fuel as a longer multi-purpose trip covering the same distance when the engine is warm.
In cold weather, properly designed gasoline aids in engine starting, while in hot weather, it helps prevent vapor lock. In order to meet the requirements of a modern engine, the fuel must have the volatility for which the engine's fuel system was built and an antiknock quality strong enough to prevent knock during routine operation.
During the intake phase, the air and fuel are combined before being introduced into the cylinder. The spark ignites the fuel-air mixture after the piston compresses it, resulting in combustion. During the power stroke, the piston is propelled by the expansion of the combustion gases.
To learn more about engine and fuel please visit -
brainly.com/question/5181209
#SPJ4
6: Short way: it cannot be 2.5, 3, or 5 because up to 5 seconds it only has positive velocity so it must be moving forwards.
Long Way: Velocity is in m / s, multiply that by time (s) to get m or displacement. From 0->5 you have a triangle under the curve, (1/2)(5)(20) = 50 meters displaced positive, you need to then look when velocity is under the curve and use a similar equation to solve for the area but make the answer negative. Find the point where it equals -50 and that is where it will have returned.
Answer to 6: B
7. I cannot see the problem enough to answer this. Just know if the line is above 0 velocity is positive so it is moving the direction it started, when it goes below 0 velocity is negative so it is moving opposite direction it started.
8. Accelration is change in velocity. Whatever the slope of the velocity graph is acceleration. At t=8 the slope is 0 because it is not going up or down.
Answer to 8: A