Those forces are exactly equal.
Gravity always works as a pair of <em>EQUAL</em> forces ... one in each direction
between two masses. Your weight on the Earth is exactly the same as
the Earth's weight on you.
Closer to the sun . . . orbital speed is faster.
Farther from the sun . . . orbital speed is slower.
Flag answer: Answer 13 Answer 13
Answer:
1456 N
Explanation:
Given that
Frequency of the piano, f = 27.5 Hz
Entire length of the string, l = 2 m
Mass of the piano, m = 400 g
Length of the vibrating section of the string, L = 1.9 m
Tension needed, T = ?
The formula for the tension is represented as
T = 4mL²f²/ l, where
T = tension
m = mass
L = length of vibrating part
F = frequency
l = length of the whole part
If we substitute and apply the values we have Fri. The question, we would have
T = (4 * 0.4 * 1.9² * 27.5²) / 2
T = 4368.1 / 2
T = 1456 N
Thus, we could conclude that the tension needed to tune the string properly is 1456 N
Answer:
I DONT KNOW WHAT TO DO SORRY
Explanation:
EVEN ME IM NOT SURW
You can't. Velocity and acceleration measure two different things, so their units are incompatible. It's like asking, "How many meters does this book weigh?"
Maybe you mean "find" acceleration using given velocities, or a velocity function?