Answer:
orbital speed of the electrons in their orbit will increase
Explanation:
As we know that centripetal force for electrons will be due to electrostatic attraction force of electron.
So it is given as

so we have

now on the left side if the force of attraction will increase and hence there must be the change in that part of equation
So here at the same position the speed of the electron
So we can say that correct answer will be
orbital speed of the electrons in their orbit will increase
Time = distance / speed
Time = (4,800 meters) / (3 x 10⁸ m/s)
<em>Time = 0.000016 second</em>
This number is not one of the choices on the list. My hunch is that you copied the distance wrong.
If the estimated distance to the star is actually 4.8 x 10¹⁵ km, instead of 4.8 km, then the answer would be close to 500 years <em>(B)</em>.
There's no way a star can be "4.8 km away from the Earth". You can <em>walk</em> that far in about an hour, and passenger jet airplanes fly <em>twice</em> as far as that away from the Earth !
Answer:
September 9 and 24 represent spring tides due to the added gravitational pull of the Sun.
Explanation:
Just trust me
Answer:
F = m × a = 50 kg × 0.8 m/s2 = 40 kg • m/s2, or 40 N
Explanation: