Given:
The sets are
and
.
To find:
Whether A and B are disjoint sets or not.
Solution:
Two sets are called disjoint sets if there are no common elements between them.
We have,


Clearly, there is not common elements between the set A and set B.
Therefore, the sets A and B are disjoint sets.
Answer:
x² + 2x + (3 / (x − 1))
Step-by-step explanation:
Start by setting up the division:
.........____________
x − 1 | x³ + x² − 2x + 3
Start with the first term, x³. Divided by x, that's x². So:
.........____x²______
x − 1 | x³ + x² − 2x + 3
Multiply x − 1 by x², subtract the result, and drop down the next term:
.........____x²______
x − 1 | x³ + x² − 2x + 3
.........-(x³ − x²)
...........----------
...................2x² − 2x
Repeat the process over again. First term is 2x². Divided by x is 2x. So:
.........____x² + 2x __
x − 1 | x³ + x² − 2x + 3
.........-(x³ − x²)
...........----------
...................2x² − 2x
Multiply, subtract the result, and drop down the next term:
.........____x² + 2x __
x − 1 | x³ + x² − 2x + 3
.........-(x³ − x²)
...........----------
...................2x² − 2x
.................-(2x² − 2x)
.................---------------
.....................................3
x doesn't divide into 3, so that's the remainder.
Therefore, the answer is:
x² + 2x + (3 / (x − 1))
Answer:
In elementary algebra, a trinomial is a polynomial consisting of three terms or monomials.
15 liters of Yoda Soda for the 36 guests.