<span>If the temperature increases in a sample of gas at constant volume, then its pressure increases. The increase in temperature makes the molecule hit the walls of the container faster. The correct option among all the options that are given in the question is the third option or option "c". I hope the answer helps you.</span>
5.2m/s
Explanation:
Given parameters:
Mass of baseball = 0.15kg
Momentum of baseball = 0.78kgm/s
Unknown:
Speed of baseball = ?
Solution:
The momentum of the baseball is a function of the product of the mass and velocity. It is a vector quantity:
Momentum = mass x velocity
Since the speed of the ball is unknown:
Velocity =
= 
= 5.2m/s
The speed of the baseball before it lands is 5.2m/s
Learn more:
Momentum brainly.com/question/9484203
#learnwithBrainly
A meter is 100 meters. So a hundredth of a meter stick is a centimeter.<span />
So I played volleyball and the benefits I got was my arm strength got better and I learned how to jump higher
Answer:
"The lowest energy configuration for an atom is the one having the maximum number of unpaired electrons allowed by thePauli principle in a particular set of degenerate orbitals" is known as Hund's rule.
Explanation:
Pauli's Exclusion principle states that "two or more electrons can not have the same values of the set of all quantum numbers in an atom or a molecule".
So, the given statement <em>is not</em> Pauli's Exclusion principle.
Hund's rule states that the lowest energy configuration of an atom is that one in which the maximum number of parallel spins of the electrons are present.
The given statement is "The lowest energy configuration for an atom is the one having the maximum number of unpaired electrons allowed by the Pauli principle in a particular set of degenerate orbitals", which is same as the Hund's rule.
Thus, the given statement is Hund' rule.
Heisenberg's uncertainty principle states that the momentum and position of an object can not be measured exactly at the same time.
So, the given statement <em>is not</em> Heisenberg's uncertainty principle.
Aufbau principle tells about the filling of the electrons in subshells of an atom. Therefore, the given statement <em>is not </em>Aufbau principle.