Answer:
Second step
(CH3)3C+ (aq) + OH^-(aq) ------->(CH3)3COH(aq)
Explanation:
This reaction involves;
First the ionization of the tertiary halide to firm a carbocation
Secondly the attack of the hydroxide ion on the carbocation to form tert-butanol
First step;
(CH3)3CBr (aq) → (CH3)3C+ (aq) + Br- (aq)
Second step
(CH3)3C+ (aq) + OH^-(aq) ------->(CH3)3COH(aq)
This second step completes the reaction mechanism.
Water vapour particles are most likely to phase change into liquid particles if the vapour particle come into contact with A COOLER SURFACE.
For a liquid to change to gas, it has to absorb enough energy to break the chemical bond that is holding the liquid particles together. When a liquid change to gas it is called vaporization. When a vapour, for instance water vapour comes in contact with cooler surfaces they lose energy and get converted back to the liquid state; this process is called condensation.
The correct answer would be option 1. The mole ratio of butane to carbon dioxide is 1:4. Looking at the balanced chemical reaction, we see that we need 2 moles of butane to produce 8 moles of carbon dioxide. So, it is 2:8. Simplifying this by dividing both to 2, we have 1:4.
Answer:
The volume of the solution is 0.305 liters.
Explanation:
Molar mass is the amount of mass that a substance contains in one mole. The molar mass of K₂Cr₂O₇ is 294 g / mole. Then you can apply the following rule of three: if by definition of molar mass 294 grams of the compound are contained in 1 mole, 180 grams are contained in how many moles?

moles= 0.61
Molarity is a measure of the concentration of a substance that is defined as the number of moles contained in a certain volume. So, the molarity of a solution is calculated by dividing the moles of the solute by the volume of the solution:

Molarity is expressed in units
.
In this case:
- molarity= 2 M
- number of moles of solute= 0.61 moles
- volume= ?
Replacing in the definition of molarity:

Solving:

volume= 0.305 liters
<u><em>The volume of the solution is 0.305 liters.</em></u>
<span><span>KaAcid</span><span><span>1.0 * 109</span>Hydrobromic acidHBr</span><span><span>1.3 * 106</span>Hydrochloric acidHCl</span><span><span>1.0 * 103</span>Sulfuric acid<span>H2SO4</span></span><span><span>2.4 * 101</span>Nitric acid<span>HNO<span>3</span></span></span></span>