No, the properties of a substance are not affected by the amount of a substance.
During normal respiration, about 500ml of air enters and leaves the lungs with each respiratory cycle. This is called the<u> tidal volume</u>.
When a person is relaxed, the normal amount of air such a person breathes in and out is called the tidal volume. It is usually measured in millimeters. For the average adult male, it is 500ml, and the tidal volume of average adult female 400ml.
In order to regulate oxygen intake and expulsion of carbon dioxide, the lungs act as buffers in order to absorb the maximum amount of oxygen possible for respiration and other metabolic functions in the body.
When the tidal volume is above or below the 500ml mark, it could signal the presence of underlying pathological conditions like bronchitis, emphysema and asthma.
To find out more about tidal volume, visit:
brainly.com/question/17439101
#SPJ4
Explanation:
As it is known that there are two types of properties. These are extensive and intensive.
Extensive properties : Properties that depend on the size or amount of system. For example, mass, volume etc.
Intensive properties : Properties that do not depend on the size or amount of system. For example, density, melting point, specific heat capacity etc.
On the basis of these properties water and ethanol are distinguished as follows.
- Density of water is 997 kg/
whereas density of ethanol is 789 kg/
. Both these liquids can be separated by intensive properties. - Melting point of water is zero degree celsius whereas melting point of ethanol is -114.1 degree celsius.
- Specific heat capacity of water is 4.184
whereas specific heat capacity of ethanol is 2.46
. - Mass of the given liquids cannot be differentiated because they will keep on changing depending on the quantity required. As mass is an extensive property, therefore, it is difficult to differentiate between the two liquids.
Thus, we can conclude that properties like density, melting point, specific heat capacity can help a chemist distinguish between ethanol and water.