Speed= distance/time
Speed= 150000m/7200s=20.83m/s(cor.to.2d.p.)
Answer:
1keff=1k1+1k2
see further explanation
Explanation:for clarification
Show that the effective force constant of a series combination is given by 1keff=1k1+1k2. (Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination. Also, each spring must exert the same force. Do you see why?
From Hooke's law , we know that the force exerted on an elastic object is directly proportional to the extension provided that the elastic limit is not exceeded.
Now the spring is in series combination
F
e
F=ke
k=f/e.........*
where k is the force constant or the constant of proportionality
k=f/e
............................1
also for effective force constant
divide all through by extension
1) Total force is
Ft=F1+F2
Ft=k1e1+k2e2
F = k(e1+e2) 2)
Since force on the 2 springs is the same, so
k1e1=k2e2
e1=F/k1 and e2=F/k2,
and e1+e2=F/keq
Substituting e1 and e2, you get
1/keq=1/k1+1/k2
Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination.
If the gravitational force were<span> decreased by half, there would be lack of gravity on earth. Hence, it would basically affect the velocity, speed, and the distance travelled in any direction by basketball players and the ball. The basketball would bounce higher and come down in a slower speed. Whereas for the players, they would be able to leap higher from the floor.</span><span> </span>
Answer:
can exchange energy with its surroundings through heat and work transfer. In other words, work and heat are the forms that energy can be transferred across the system boundary.
Answer:

Explanation:
From work energy theorem
Work done by all forces = Change in kinetic energy
Lets take
m= mass of object
h=height from the ground surface
initial velocity of object = 0 m/s
The final velocity of object is v
Work done by gravitational force = m g . h
The final kinetic energy = 1/2 m v²
So
Work done by all forces = Change in kinetic energy
m g h = 1/2 m v² - 0
v² = 2 g h
