Answer:
t = 2.2 s
Explanation:
Given that,
A person observes a firework display for A safe distance of 0.750 km.
d = 750 m
The speed of sound in air, v = 340 m/s
We need to find the between the person see and hear a firework explosion. let it is t. So, using the formula of speed.

So, the required time is 2.2 seconds.
The coal is urned to heat up water. this produces steam. the steam turns a turbine that turns a generator which provided energy yhat can be transferred into electrisity
Answer: The person sitting in the middle of the train sees the back of the train enter ing the tunnel before the front end comes out.
Explanation:
The magnitude of the electric field at the proton's location is 10,437.5 N/C.
<h3>What the magnitude of the
electric field?</h3>
The size of the electric field is basically characterized as the power per charge on the test charge. On the off chance that the electric field strength is meant by the image E. Very much like gravity, electric fields work the same way. In any case, while gravity generally draws in, an electric field, then again, can either rebuff or draw in. By and large, the Electric Field submits to the super-position guideline. the all out Electric Field from various charges is equivalent to the amount of the electric fields from each charge separately. An electric field is the actual field that encompasses electrically charged particles and applies force on any remaining charged particles in the field, either drawing in or repulsing them.
Learn more about the magnitude of the electric field, visit
brainly.com/question/26898699
#SPJ4
Answer:
a = 1.5*10^-3 m/s^2
x = 0.033m = 3.3cm
Explanation:
To calculate the acceleration and the distance traveled by the car you use the following formulas:
(1)
(2)
v: final velocity = 0,255 km/h
vo: initial velocity = 0 m/s
t: time = 3/4 min
a: acceleration = ?
x: distance
In order to use the equations (1) and (2) you first convert the units of the final velocity to m/s, and the time to seconds.

Next, you solve the equation (1) for the acceleration a:

With this value of a you can calculate the distance traveled by the car, by using the equation (2):

hence, the acceleration of the car is 1.5*10^-3 m/s^2 and the distance traveled in 3/4 min is 0.033m