Answer:
C
Explanation:
Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces
I hope this helps a little bit
Answer:
The horizontal velocity is 
Explanation:
From the question we are told that
The mass of the pumpkin is 
The distance of the the car from the building's base is 
The height of the roof is 
The height is mathematically represented as

Where g is the acceleration due to gravity which has a value of 
substituting values

making the time taken the subject of the formula


The speed at which the pumpkin move horizontally can be represented mathematically as

substituting values


Answer:



Explanation:
<u>Simple Pendulum</u>
It's a simple device constructed with a mass (bob) tied to the end of an inextensible rope of length L and let swing back and forth at small angles. The movement is referred to as Simple Harmonic Motion (SHM).
(a) The angular frequency of the motion is computed as

We have the length of the pendulum is L=0.81 meters, then we have


(b) The total mechanical energy is computed as the sum of the kinetic energy K and the potential energy U. At its highest point, the kinetic energy is zero, so the mechanical energy is pure potential energy, which is computed as

where h is measured to the reference level (the lowest point). Please check the figure below, to see the desired height is denoted as Y. We know that

And

Solving for Y



The potential energy is


The mechanical energy is, then


(c) The maximum speed is achieved when it passes through the lowest point (the reference for h=0), so the mechanical energy becomes all kinetic energy (K). We know

Equating to the mechanical energy of the system (M)

Solving for v


Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.