1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Westkost [7]
3 years ago
7

Hey can someone help:)?​

Mathematics
1 answer:
Zolol [24]3 years ago
7 0
I think it’s the first one
You might be interested in
3(x-5)=2(x-10)<br> Solce for X
stira [4]

Answer: X = -5

Step-by-step explanation:

3(x-5)=2(x-10)

3x - 15 = 2x -20

3x = 2x -5

x = -5

8 0
2 years ago
Read 2 more answers
0.6630 divided by 0.51
Alisiya [41]

Step-by-step explanation:

1 act like the decimals aren't there then put 50:1 on the outside and 6630 on the inside and divide like normal

7 0
2 years ago
Read 2 more answers
A company makes concrete paving stones in different sizes. Each stone has a volume of 360 inches and a height of 3 inches. the s
Misha Larkins [42]
I got 6 but I'm not 100% sure if its right.

5 0
3 years ago
Read 2 more answers
“encontrar la integral indefinida y verificar el resultado mediante derivación”
Oliga [24]

I=\displaystyle\int\frac x{(1-x^2)^3}\,\mathrm dx

Haz la sustitución:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{y^3}=\frac1{4y^2}+C=\frac1{4(1-x^2)^2}+C

Para confirmar el resultado:

\dfrac{\mathrm dI}{\mathrm dx}=\dfrac14\left(-\dfrac{2(-2x)}{(1-x^2)^3}\right)=\dfrac x{(1-x^2)^3}

I=\displaystyle\int\frac{x^2}{(1+x^3)^2}\,\mathrm dx

Sustituye:

y=1+x^3\implies\mathrm dy=3x^2\,\mathrm dx

\implies I=\displaystyle\frac13\int\frac{\mathrm dy}{y^2}=-\frac1{3y}+C=-\frac1{3(1+x^3)}+C

(Te dejaré confirmar por ti mismo.)

I=\displaystyle\int\frac x{\sqrt{1-x^2}}\,\mathrm dx

Sustituye:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{\sqrt y}=-\frac12(2\sqrt y)+C=-\sqrt{1-x^2}+C

I=\displaystyle\int\left(1+\frac1t\right)^3\frac{\mathrm dt}{t^2}

Sustituye:

u=1+\dfrac1t\implies\mathrm du=-\dfrac{\mathrm dt}{t^2}

\implies I=-\displaystyle\int u^3\,\mathrm du=-\frac{u^4}4+C=-\frac{\left(1+\frac1t\right)^4}4+C

Podemos hacer que esto se vea un poco mejor:

\left(1+\dfrac1t\right)^4=\left(\dfrac{t+1}t\right)^4=\dfrac{(t+1)^4}{t^4}

\implies I=-\dfrac{(t+1)^4}{4t^4}+C

4 0
3 years ago
Need help please...........
Katen [24]
The missing angle is 49 :)
8 0
2 years ago
Read 2 more answers
Other questions:
  • Annie and Jill went to dinner. The sum of their two bills was $80. The difference was $10. Jill spent more money than Annie. How
    10·1 answer
  • Slope intercept equation for (0,-4) and (4,1)
    12·1 answer
  • Renata and david want to cover the walls in one room of their house with wall paper.
    10·1 answer
  • Solve the equation log (x + 20) = 3
    15·1 answer
  • How do you graph y=8.5x
    15·1 answer
  • Which of the following is a term in the<br> expression 3x2 + 5x +9?
    7·1 answer
  • Which best describes bias, if any, from the sample surveyed?
    6·2 answers
  • Carole's age is five times Joe's age. The sum of their ages is 18. How old are Carole and Joe?​
    13·2 answers
  • I cant figure out the answer​
    7·2 answers
  • Which triangle is a reflection of the orange triangle?<br><br><br><br><br> Δ4<br> Δ3<br> Δ1<br> Δ2
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!