1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Misha Larkins [42]
2 years ago
14

JUST DO IT PKEASE DIWOSJJDNKA

Mathematics
1 answer:
Archy [21]2 years ago
7 0
Do u have snap ? there’s a group we help each other with our school work
You might be interested in
Solve the equation <br> -4+-1+2+.....+x=437
aliina [53]
[2<span>] </span>x<span>. </span><span>437 is the answer

</span>
7 0
3 years ago
Read 2 more answers
6. What is the 14th partial sum for the arithmetic sequence where a1= 18 and d = 9.4?
Marina86 [1]

Answer:

Step-by-step explanation:

Its about drive its about power we stay hungry we devoure put in the work put in the power and take what's our

3 0
2 years ago
Read 2 more answers
What is the value for x?
taurus [48]

Step-by-step explanation:

angle B=6x+4

6x=4

x=4/6

x=0.6

..I got this much...sorry if its wrong

5 0
3 years ago
Read 2 more answers
The graph of an exponential function is given. Which of the following is the correct equation of the function?
katen-ka-za [31]

Answer:

If one of the data points has the form  

(

0

,

a

)

, then a is the initial value. Using a, substitute the second point into the equation  

f

(

x

)

=

a

(

b

)

x

, and solve for b.

If neither of the data points have the form  

(

0

,

a

)

, substitute both points into two equations with the form  

f

(

x

)

=

a

(

b

)

x

. Solve the resulting system of two equations in two unknowns to find a and b.

Using the a and b found in the steps above, write the exponential function in the form  

f

(

x

)

=

a

(

b

)

x

.

EXAMPLE 3: WRITING AN EXPONENTIAL MODEL WHEN THE INITIAL VALUE IS KNOWN

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population was growing exponentially. Write an algebraic function N(t) representing the population N of deer over time t.

SOLUTION

We let our independent variable t be the number of years after 2006. Thus, the information given in the problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be measured as years after 2006, we have given ourselves the initial value for the function, a = 80. We can now substitute the second point into the equation  

N

(

t

)

=

80

b

t

to find b:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N

(

t

)

=

80

b

t

180

=

80

b

6

Substitute using point  

(

6

,

180

)

.

9

4

=

b

6

Divide and write in lowest terms

.

b

=

(

9

4

)

1

6

Isolate  

b

using properties of exponents

.

b

≈

1.1447

Round to 4 decimal places

.

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places for the remainder of this section.

The exponential model for the population of deer is  

N

(

t

)

=

80

(

1.1447

)

t

. (Note that this exponential function models short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph below passes through the initial points given in the problem,  

(

0

,

8

0

)

and  

(

6

,

18

0

)

. We can also see that the domain for the function is  

[

0

,

∞

)

, and the range for the function is  

[

80

,

∞

)

.

Graph of the exponential function, N(t) = 80(1.1447)^t, with labeled points at (0, 80) and (6, 180).If one of the data points has the form  

(

0

,

a

)

, then a is the initial value. Using a, substitute the second point into the equation  

f

(

x

)

=

a

(

b

)

x

, and solve for b.

If neither of the data points have the form  

(

0

,

a

)

, substitute both points into two equations with the form  

f

(

x

)

=

a

(

b

)

x

. Solve the resulting system of two equations in two unknowns to find a and b.

Using the a and b found in the steps above, write the exponential function in the form  

f

(

x

)

=

a

(

b

)

x

.

EXAMPLE 3: WRITING AN EXPONENTIAL MODEL WHEN THE INITIAL VALUE IS KNOWN

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population was growing exponentially. Write an algebraic function N(t) representing the population N of deer over time t.

SOLUTION

We let our independent variable t be the number of years after 2006. Thus, the information given in the problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be measured as years after 2006, we have given ourselves the initial value for the function, a = 80. We can now substitute the second point into the equation  

N

(

t

)

=

80

b

t

to find b:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N

(

t

)

=

80

b

t

180

=

80

b

6

Substitute using point  

(

6

,

180

)

.

9

4

=

b

6

Divide and write in lowest terms

.

b

=

(

9

4

)

1

6

Isolate  

b

using properties of exponents

.

b

≈

1.1447

Round to 4 decimal places

.

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places for the remainder of this section.

The exponential model for the population of deer is  

N

(

t

)

=

80

(

1.1447

)

t

. (Note that this exponential function models short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph below passes through the initial points given in the problem,  

(

0

,

8

0

)

and  

(

6

,

18

0

)

. We can also see that the domain for the function is  

[

0

,

∞

)

, and the range for the function is  

[

80

,

∞

)

.

Graph of the exponential function, N(t) = 80(1.1447)^t, with labeled points at (0, 80) and (6, 180).

Step-by-step explanation:

4 0
2 years ago
Which of these is one of the most expensive fees you will encounter with checking accounts?
grigory [225]

Answer:

atm fees that is your answer

Step-by-step explanation:

8 0
2 years ago
Other questions:
  • What is the surface area of the figure shown below?
    10·1 answer
  • The sales price of a car is 12,590 which is 20% off the original price what is the original price
    12·1 answer
  • Compare different pay scales. Decided if it is better to receive $300 a week or to be paid hourly at a rate of $7.50 per hour. W
    10·1 answer
  • Sarah sells fruit trays at a salad shop. Last week, she sold 450 fruit trays for $8 per tray. In previous weeks, she found that
    10·2 answers
  • 248 students went on a trip to the zoo 6 buses were filled with students how to travel in cars how many students were the bus?
    7·1 answer
  • 1) Mr. Turnage spent $800 on a new computer. He used his debit card to
    6·1 answer
  • Can someone please help me. given g(x) = -4x+4, find g(3).​
    15·1 answer
  • ASAP GIVING BRAINIEST AND 20 points 1. How can technology be both positive and negative when it comes to modified crops?
    8·1 answer
  • Q 1.) Expand using identities:<br>i. (a+2b)²<br>ii. (5x-3y)²<br>iii. (3a+4)(3a-4)(9a²+16)<br>​
    7·1 answer
  • christy uses glass beads to make braclets and necklances it takes her 30 minutes to make a bracelet and 45 minites to make a nec
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!