Answer:
-1/8
Step-by-step explanation:
lim x approaches -6 (sqrt( 10-x) -4) / (x+6)
Rationalize
(sqrt( 10-x) -4) (sqrt( 10-x) +4)
------------------- * -------------------
(x+6) (sqrt( 10-x) +4)
We know ( a-b) (a+b) = a^2 -b^2
a= ( sqrt(10-x) b = 4
(10-x) -16
-------------------
(x+6) (sqrt( 10-x) +4)
-6-x
-------------------
(x+6) (sqrt( 10-x) +4)
Factor out -1 from the numerator
-1( x+6)
-------------------
(x+6) (sqrt( 10-x) +4)
Cancel x+6 from the numerator and denominator
-1
-------------------
(sqrt( 10-x) +4)
Now take the limit
lim x approaches -6 -1/ (sqrt( 10-x) +4)
-1/ (sqrt( 10- -6) +4)
-1/ (sqrt(16) +4)
-1 /( 4+4)
-1/8
Answer:
y = 9
Step-by-step explanation:
So if x = 3, we can sub that into the equation.
This gives us:
6.4 (* 3) + 2.8y = 44.4
so:
19.2 + 2.8y = 44.4
25.2 = 2.8y
so
y = 9
By adding 6, the next number should be 158
Answer:
1
Step-by-step explanation:
x+y=-9
y=-x-9
So slope of original line is -1.
The line perpendicular to the original line is -1/-1 = 1