Answer:
Oxygen Gas
Explanation:
The balanced equation shows us the reactant ratio of the reaction.
This means that for every one mole of CH3CH2OH, we need 3 moles of O2 to react with it. Because we need more O2, (3x as much) than ethanol and we have the same given amount (1 mole of each), the oxygen will be the limiting reagent. (1 mole of oxygen would only require 1/3 moles of ethanol to react).
Hope this helped!
When you add heat to a solid the particles gain energy and start to vibrate faster and faster.
When you add heat to a liquid the particles are given more energy and move faster and faster expanding the liquid.
Answer:
<u><em></em></u>
- <u><em>Because the x-intercet of the graph represents volume zero, which indicates the minimum possible temperature or absolute zero.</em></u>
Explanation:
Charle's Law for ideal gases states that, at constant pressure, the <em>temperature</em> and the <em>volume</em> of a sample of gas are protortional.

That means that the graph of the relationship between Temperature, in Kelivn, and Volume is a line, which passes through the origin.
When you work with Temperature in Celsius, and the temperature is placed on the x-axis, the line is shifted to the left 273.15ºC.
Meaning that the Volume at 273.15ºC is zero.
You cannot reach such low temperatures in an experiment, and also, volume zero is not real.
Nevertheless, you can draw the line of best fit and extend it until the x-axis (corresponding to a theoretical volume equal to zero), and read the corresponding temperature.
Subject to the experimental errors, and the fact that the real gases are not ideal, the temperature that you read on the x-axis is the minimum possible temperature (<em>absolute zero</em>) as the minimum possible volume is zero.
Answer:
Ka = 
Explanation:
Initial concentration of weak acid =
pH = 6.87
![pH = -log[H^+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%5E%2B%5D)
![[H^+]=10^{-pH}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-pH%7D)
![[H^+]=10^{-6.87}=1.35 \times 10^{-7}\ M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-6.87%7D%3D1.35%20%5Ctimes%2010%5E%7B-7%7D%5C%20M)
HA dissociated as:

(0.00045 - x) x x
[HA] at equilibrium = (0.00045 - x) M
x = 
![Ka = \frac{[H^+][A^{-}]}{[HA]}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)

0.000000135 <<< 0.00045

Answer:
D
Explanation:
The high jump of ionization energy indicates that we are trying to remove electron from noble gas configuration state.
The ionization energy data specifies that the Elements are from group 1 at period 3 or greater.
Removing the first electron require 496 kJ and the second ionization energy jump significantly due to the removal of electron from the noble gas configuration which is logical because electron try to maintain the especially stable state.