Answer:
We can compute the diameter of the tree T by a pruning procedure, starting at the leaves (external nodes).
- Remove all leaves of T. Let the remaining tree be T1.
-
Remove all leaves of T1. Let the remaining tree be T2.
-
Repeat the "remove" operation as follows: Remove all leaves of Ti. Let remaining tree be Ti+1.
-
When the remaining tree has only one node or two nodes, stop! Suppose now the remaining tree is Tk.
-
If Tk has only one node, that is the center of T. The diameter of T is 2k.
-
If Tk has two nodes, either can be the center of T. The diameter of T is 2k+1.
Explanation:
We can compute the diameter of the tree T by a pruning procedure, starting at the leaves (external nodes).
- Remove all leaves of T. Let the remaining tree be T1.
-
Remove all leaves of T1. Let the remaining tree be T2.
-
Repeat the "remove" operation as follows: Remove all leaves of Ti. Let remaining tree be Ti+1.
-
When the remaining tree has only one node or two nodes, stop! Suppose now the remaining tree is Tk.
-
If Tk has only one node, that is the center of T. The diameter of T is 2k.
-
If Tk has two nodes, either can be the center of T. The diameter of T is 2k+1.
Answer:0.1898 Pa/m
Explanation:
Given data
Diameter of Pipe
Velocity of water in pipe
We know viscosity of water is
Pressure drop is given by hagen poiseuille equation
We have asked pressure Drop per unit length i.e.
Substituting Values
=0.1898 Pa/m
The advantage of a pareto chart is to make sure they have all of their tools
Answer:
hello your question is incomplete attached below is the complete question
answer: There is a hydraulic jump
Explanation:
First we have to calculate the depth of flow downstream of the gate
y1 = ----------- ( 1 )
Cc ( concentration coefficient ) = 0.61 ( assumed )
Yg ( depth of gate opening ) = 0.5
hence equation 1 becomes
y1 = 0.61 * 0.5 = 0.305 m
calculate the flow per unit width q
q = Q / b ----------- ( 2 )
Q = 10 m^3 /s
b = 2 m
hence equation 2 becomes
q = 10 / 2 = 5 m^2/s
next calculate the depth before hydraulic jump y2 by using the hydraulic equation
answer : where y1 < y2 hence a hydraulic jump occurs in the lined channel
attached below is the remaining part of the solution