The value of g at sea level is 9.81 ms^-2.
The boy's mass is constant wherever he is in the universe but his weight will depend on the strength gravity where he is.
By proportion its value on the mountain peak is (360 /400) * 9.81
= 0.9 * 9.81 = 8.83 ms^-2 to nearest hundredth, (answer).
a) earth acts as a lange magnetic. Therefore when a magnet is hanging freely, it points towards the magnetic poles (like a compass)
b) like poles repel and unlike poles attracts. We can conclude with repulsion that poles are same
c) In our everyday experience aluminum doesn't stick to magnets. (under normal circumstances aluminum isn't visibly magnetic)
The potential across the capacitor at t = 1.0 seconds, 5.0 seconds, 20.0 seconds respectively is mathematically given as
- t=0.476v
- t=1.967v
- V2=4.323v
<h3>What is the potential across the capacitor?</h3>
Question Parameters:
A 1. 0 μf capacitor is being charged by a 9. 0 v battery through a 10 mω resistor.
at
- t = 1.0 seconds
- 5.0 seconds
- 20.0 seconds.
Generally, the equation for the Voltage is mathematically given as
v(t)=Vmax=(i-e^{-t/t})
Therefore
For t=1
V=5(i-e^{-1/10})
t=0.476v
For t=5s
V2=5(i-e^{-5/10})
t=1.967
For t=20s
V2=5(i-e^{-20/10})
V2=4.323v
Therefore, the values of voltages at the various times are
- t=0.476v
- t=1.967v
- V2=4.323v
Read more about Voltage
brainly.com/question/14883923
Complete Question
A 1.0 μF capacitor is being charged by a 5.0 V battery through a 10 MΩ resistor.
Determine the potential across the capacitor when t = 1.0 seconds, 5.0 seconds, 20.0 seconds.
Answer:
All these is caused by the repulsion force.
Explanation:
The electroscope produces a series of electric charges that produce a repulsion force when is putted in contact with a electric charged object.
As the physics law mentions, two different forces are repealed, the electrocospe is charged negatively and the object positively, causing a repulsion force that avoids that both objects touch the other.