Answer:
6.96 s
Explanation:
<u>Given:</u>
- u = initial speed of the automobile = 0 m/s
- a = constant acceleration of the automobile =

- v = constant speed of the truck = 8.7 m/s
<u>Assume:</u>
- t = time instant at which the automobile overtakes the truck.
At the moment the automobile and the truck both meat each other the distance travel by both vehicles must be the same.

Since t = 0 s is the initial condition. So, they both meet again at t = 6.96 s such that the automobile overtakes the truck.
Answer:
Final velocity = 7.677 m/s
KE before crash = 202300 J
KE after crash = 182,702.62 J
Explanation:
We are given;
m1 = 1400 kg
m2 = 4700 kg
u1 = 17 m/s
u2 = 0 m/s
Using formula for inelastic collision, we have;
m1•u1 + m2•u2 = (m1 + m2)v
Where v is final velocity after collision.
Plugging in the relevant values;
(1400 × 17) + (4700 × 0) = (1400 + 1700)v
23800 = 3100v
v = 23800/3100
v = 7.677 m/s
Kinetic energy before crash = ½ × 1400 × 17² = 202300 J
Kinetic energy after crash = ½(1400 + 1700) × 7.677² = 182,702.62 J
Answer:infrared radiation
Explanation:
Most remote control uses infrared radiation
A light wave that hits the surface of a pool gets refracted and gives us an apparent image of the surface of the pool, following the concepts of refraction.
<u>Explanation:</u>
Let’s recall the concept of refraction when a light wave passes from medium of rarer to denser. There is a change in the speed of light while travelling from medium of rarer to denser.
There can be a change in the direction as well. This property is known as “Refraction” and the best example to see refraction is watching the surface of a clean pond, lake or pool.
When the light travels from a rarer medium (air) to a denser medium (water), it changes its angle of direction and gets refracted and hit to our eye lenses. With this, we see the surface of the pool at a changed angle and it seems to be a bit shallow than its original depth.