The answer would be B. An example of this would be the Noble gasses. They include: Helium, Argon, Neon, and so on. They are all located on the very right side because they share similar chemical behaviours; they dont react very easily because they have a full valence shell.
Answer:
a) time t1 = 2.14s
b) initial angular speed w1 = 6 rad/s
Explanation:
Given that;
Initial Angular velocity = w1
Angular distance = s = 65 rad
time = t = 5 s
Angular acceleration a = 2.80 rad/s^2
Using the equation of motion;
s = w1t + (at^2)/2
w1 = (s-0.5(at^2))/t
Substituting the values;
w1 = (65 - (0.5×2.8×5^2))/5
w1 = 6rad/s
Time to reach w1 from rest;
w1 = at1
t1 = w1/a = 6/2.8 = 2.14s
a) time t1 = 2.14s
b) initial angular speed w1 = 6 rad/s
A hypothermia is like an idea and a theory is something you think
Answer You need to consider that the gravity on earth is 9.8 m/s/s. This means any object you let go on the earths surface will gain 9.8 m/s of speed every second. You need to apply a force on the object in the opposite direction to avoid this acceleration. If you are pushing something up at a constant speed, you are just resisting earths acceleration. The more massive and object is, the greater force is needed to accelerate it. The equation is Force = mass*acceleration. So for a 2kg object in a 9.8 m/s/s gravity you need 2kg*9.8m/s/s = 19.6 Newtons to counteract gravity. Work or energy = force * distance. So to push with 19.6 N over a distance of 2 meters = 19.6 N*2 m = 39.2 Joules of energy. There is an equation that puts together those two equations I just used and it is E = mgh
The amount of Energy to lift an object is (mass) * (acceleration due to gravity) * (height)
:Hence, the Work done to life the mass of 2 kg to a height of 10 m is 196 J. Hope it helps❤️❤️❤️
Explanation:
Answer:
82.25 moles of He
Explanation:
From the question given above, the following data were obtained:
Volume (V) = 10 L
Mass of He = 0.329 Kg
Temperature (T) = 28.0 °C
Molar mass of He = 4 g/mol
Mole of He =?
Next, we shall convert 0.329 Kg of He to g. This can be obtained as follow:
1 Kg = 1000 g
Therefore,
0.329 Kg = 0.329 Kg × 1000 g / 1 Kg
0.329 Kg = 329 g
Thus, 0.329 Kg is equivalent to 329 g.
Finally, we shall determine the number of mole of He in the tank. This can be obtained as illustrated below:
Mass of He = 329 g
Molar mass of He = 4 g/mol
Mole of He =?
Mole = mass / molar mass
Mole of He = 329 / 4
Mole of He = 82.25 moles
Therefore, there are 82.25 moles of He in the tank.