Answer:
The magnitude of the flux of electric field through a square of surface area is zero.
Explanation:

It is given that square box is parallel to yz-plane which has normal vector perpendicular to plane in x-direction. Angle between normal vector of area and electric field is 90°. Substituting in (1)

Ice is only thing which is mightier than steel because it can breaks things which are made up of steels like ships but in the sunlight ice melts away it means it cowards away.
Answer:
g' = 13.5 m/s²
Explanation:
The acceleration due to gravity on surface of earth is given by the formula:
g = GMe/Re² --------------- euation 1
where,
g = acceleration due to gravity on surface of earth
G = Universal Gravitational Constant
Me = Mass of Earth
Re = Radius of Earth
Now, the the acceleration due to gravity on the surface of Kepler-62e is:
g' = GM'/R'² --------------- euation 1
where,
g' = acceleration due to gravity on surface of Kepler-62e
G = Universal Gravitational Constant
M' = Mass of Kepler-62e = 3.57 Me
R' = Radius of Kepler-62e = 1.61 Re
Therefore,
g' = G(3.57 Me)/(1.61 Re)²
g' = 1.38 GMe/Re²
using equation 1:
g' = 1.38 g
where,
g = 9.8 m/s²
Therefore,
g' = 1.38(9.8 m/s²)
<u>g' = 13.5 m/s²</u>
Do find the percentage you:
5.43/15.6=0.34
Time by 100:
34%
Closest answer is 35%
Hope this helps ;)
Potential energy = (mass) x (gravity) x (height)
1 joule = (1,000 kg) x (9.8 m/s²) x (height)
Height = 1 joule / (9,800 newtons)
= 1/9800 meter
= 0.000102 meter
= 0.102 millimeter (rounded)