Hi there!
We can use the following kinematic equation:

vf = final velocity (? m/s)
vi = intial velocity (0 m/s)
a = acceleration (5 m/s²)
d = displacement (8 m)
Plug in the givens and solve.

Answer:
As the number of turns in the coil increases, the strength of the electromagnet increases.
Explanation:
When current flows through a coil the coil behaves as an electromagnet. The strength of electromagnet depend the amount of current, no of turns of coil and the core of coil.
B=μ₀ N I
μ₀ = permeability of the core
N = Number of turns of the coil
I = Current flowing through the coil
Increasing the current and number of coils increase the strength of electromagnet.
Explanation:
Formula depicting relation between total flux and total charge Q is as follows.
(Gauss's Law)
Putting the given values into the above formula as follows.
Q =
= 
= 
= -8.4 nC
Therefore, when the unknown charge is q then,
-14.0 nC + 33.0 nC + q = -8.4 nC
q = -27.4 nC
Thus, we can conclude that charge on the third object is -27.4 nC.
Answer:
distance = 33.124 meters
Explanation:
To solve this question, we will use one of the equations of motion which is:
s = ut + 0.5a * t^2
where:
s is the distance that we want to get
u is the initial velocity = 0
a is the acceleration due to gravity = 9.8 m/sec^2
t is the time = 2.6 sec
Substitute with the givens in the equation to get the distance as follows:
s = ut + 0.5a * t^2
s = (0)(2.6) + 0.5(9.8)(2.6)^2
s = 33.124 meters
Hope this helps :)
The 4 significant figures of 31,546,000 are all 8 of the digits.