Answer:
Part a)
Mass of m2 is given as

Part b)
Angular acceleration is given as

Part c)
Tension in the rope is given as

Explanation:
Part a)
When m1 and m2 both connected to the cylinder then the system is at rest
so we can use torque balance here




Part b)
When block m_2 is removed then system becomes unstable
so force equation of mass m1

also we have

now we have




so angular acceleration is given as



Part c)
Tension in the rope is given as



Answer:
<em>The velocity of the carts after the event is 1 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
The total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
In a system of two masses, the equation simplifies to:

If both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

The m1=2 kg cart is moving to the right at v1=5 m/s. It collides with an m2= 8 kg cart at rest (v2=0). Knowing they stick together after the collision, the common speed is:

The velocity of the carts after the event is 1 m/s
Answer:
4.22 m
Explanation:
Una rampa es una máquina que se utiliza para levantar un objeto con una fuerza menor a la que realmente necesitarías. Cuanto mayor sea la longitud de la rampa, menor será la magnitud de la fuerza necesaria para levantar el objeto.
Dado que:
altura de la rampa = 1.5 m, carga = 4900 N, fuerza aplicada = 1633.33 N.
La fórmula de la rampa se da como:
fuerza aplicada * longitud de la rampa = peso de la carga * altura de la rampa
1633.33 * longitud de la rampa = 4900 * 1.5
longitud de la rampa = 4900 * 1.5 / 1633.33
longitud de la rampa = 4.22 m