Several pieces of equipment can do this, including the Bunsen burner, laboratory oven, hot plate and incubator.
The answer is C. The water will boil at a higher temperature. This is because the solute is an impurity that raises the boiling point and lowers the melting point of water.
An orbital is the most probable location of an electron. This is because you can't pinpoint the exact location of an electron because as soon as you do it will have moved again, so orbitals are used to find the probability of where a certain electron is.
B is the correct answer! I learned this in class last week :)
Answer:
The [OH⁻] of a solution that has a pOH of 2.7 will be 2*10⁻³
Explanation:
The pOH (or potential OH) is a measure of the basicity or alkalinity of a solution.
pOH indicates the concentration of hydroxyl ions [OH-] present in a solution. In this way, pOH is defined as the negative logarithm of the activity of hydroxide ions, that is, the concentration of OH- ions:
pOH= -log [OH⁻]
In this case, pOH has a value of 2.7. Replacing:
2.7= -log [OH⁻]
and solving:
[OH⁻]=10⁻² ⁷
you get:
[OH⁻]≅ 2*10⁻³
<u><em>The [OH⁻] of a solution that has a pOH of 2.7 will be 2*10⁻³</em></u>