During ethyl alcohol fermentation<span>, the pyruvate molecules are broken down into ethyl </span>alcohol<span> molecules and carbon dioxide molecules. During </span>lactic<span> acid</span>fermentation<span>, the pyruvate molecules are broken down into </span>lactic<span> acid molecules only.</span>
Answer:
MgSO4.7H2O
Explanation:
Let the formula for the hydrated magnesium sulphate be MgSO4.xH2O
Mass of the hydrated salt (MgSO4.xH2O) = 12.845g
Mass of anhydrous salt (MgSO4) = 6.273g
Mass of water molecule(xH2O) = Mass of the hydrated salt — Mass of anhydrous salt = 12.845 — 6.273 = 6.572g
Now,we can obtain the number of mole of water molecule present in the hydrated salt as follows:
Molar Mass of hydrated salt (MgSO4.xH2O) = 24 + 32 + (16x4) + x(2 + 16) = 24 + 32 + 64 + x(18) = 120 + 18x
Mass of xH2O/ Molar Mass of MgSO4.xH2O = Mass of water / mass of hydrated salt
18x/120 + 18x = 6.572/12.845
Cross multiply to express in linear form
18x x 12.845 = 6.572(120 + 18x)
231.21x = 788.64 + 118.296x
Collect like terms
231.21x — 118.296x = 788.64
112.914x = 788.64
Divide both side by 112.914
x = 788.64 /112.914
x = 7
Therefore the formula for the hydrated salt (MgSO4.xH2O) is MgSO4.7H2O
Answer:
2,7 m
Explanation:
You can solve this doing an energy balance:
![m*g*h-\frac{1}{2} *m*v^{2} =41,7[J]](https://tex.z-dn.net/?f=m%2Ag%2Ah-%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%3D41%2C7%5BJ%5D)
Solving this equation to get h:

Replacing the values and solving brings to 2,7 m
Answer:
A) An Alkaline
Explanation:
An alkane that is pentane which is substituted by a methyl group at position 3. It is used as a solvent in organic synthesis, as a lubricant and as a raw material for producing carbon black.
The compound that is formed is: MgI2