Answer:
Make an observation.
Ask a question.
Form a hypothesis, or testable explanation.
Make a prediction based on the hypothesis.
Test the prediction.
Iterate: use the results to make new hypotheses or predictions.
Explanation:
Answer:
About 5 times faster.
Explanation:
Hello,
In this case, since the Arrhenius equation is considered for both the catalyzed reaction (1) and the uncatalized reaction (2), one determines the relationship between them as follows:

By replacing the corresponding values we obtain:

Such result means that the catalyzed reaction is about five times faster than the uncatalyzed reaction.
Best regards.
Answer:
NH3
Explanation:
2NH3(aq)+CO2(aq)→CH4N2O(aq)+H2O(l)
So for two moles of NH3 we need one mole of CO2. So let's count moles for each reagent.
n(NH3)=m(NH3)/M(NH3)=135700/17,03=7968.29 mol
n(CO2)=m(CO2)/M(CO2)=211400/44.01=4803.45 mol
From equation we have to divide n(NH3) by 2 because we need two equivalent per one CO2. That will be 3984.145. So the limiting agent is NH3 because it's not enough of it to react with all CO2
Answer:
The number before any molecular formula applies to the entire formula. So here you have five molecules of water with two hydrogen atoms and one oxygen atom per molecule. Thus you have ten hydrogen atoms and five oxygen atoms in total.
ΔG⁰ = ΔH⁰ - T ΔS⁰
ΔG⁰ : Standard free energy of formation of acetylene
ΔH⁰ : Standard enthalpy of formation (226.7 kJ/mol)
ΔS⁰ : Standard entropy change (58.8 J / K. mol)
T : Temperature 25°C = 298 K (room temperature)
ΔG⁰ = 226.7 - (298 x 58.8 x 10⁻³) = 209.2 kJ /mol