Answer:

Explanation:
The metabolic pathway by which energy can be obtained from a fatty acid is called <u>"beta-oxidation"</u>. In this route, acetyl-Coa is produced by removing <u>2 carbons</u> from the fatty acid for each acetyl-Coa produced. In other words, for each round, 1 acetyl Coa is produced and for each round 2 carbons are removed from the initial fatty acid. Therefore, the first step is to calculate the <u>number of rounds</u> that will take place for an <u>18-carbon fatty</u> acid using the following equation:

Where "n" is the <u>number of carbons</u>, in this case "18", so:

We also have to calculate the amount of Acetyl-Coa produced:

Now, we have to keep in mind that in each round in the beta-oxidation we will have the <u>production of 1
and 1
</u>. So, if we have 8 rounds we will have 8
and 8
.
Finally, for the total calculation of ATP. We have to remember the <u>yield for each compound</u>:
-)
-) 
-) 
Now we can do the total calculation:

We have to <u>subtract</u> "2 ATP" molecules that correspond to the <u>activation</u> of the fatty acid, so:

In total, we will have 128 ATP.
I hope it helps!
yes 89.75 sorry I'm not the best at math you should look on the internet
<h2>
Answer:</h2>
The magnesium ribbon, <u>D. It forms a material to cast the tool mark</u>.
<h2>
Explanation:</h2>
When a magnesium ribbon is burnt in the presence of oxygen it gives out strong light and heat is produced. Apart from it, it leads to the production of substance called as magnesium oxide which is formed as the product due to the reaction of magnesium with the oxygen present in the air.
Tool marks are the mark which is created by tools while using them. In order to identify or locate them castes made up of magnesium oxide is utilized. When this is pasted on the suspected area, the tool mark of the suspected tool gets pasted on it.
The answer is B. Enzymes.
Enzymes are biological catalysts that help cause reactions in your body.
<span>My hypothesis is the the cell, having a higher osmolarity than the solution of of nacl in the beaker, will have an osmosis reaction releasing into the solution of nacl. This will continue until both cell and solution reach a balance.</span>