During endothermic phase change, the potential energy of the system always increases while the kinetic energy of the system remains constant. The potential energy of the reaction increases because energy is been added to the system from the external environment.
<u>Explanation</u>:
- Those are three distinct methods for demonstrating a specific energy condition of an object. They don't affect one another.
- "Potential Energy" is a relative term showing a release of possible energy to the environment. If we accept its pattern as the overall energy state of a compound, at that point, an endothermic phase change would infer an increase in "potential" as energy is being added to the compound by the system.
- A phase change will display an increase in the kinetic energy at whatever point the compound is transforming from a high density to a low dense phase. The kinetic energy will decrease at whatever point the compound is transforming from a less dense to high dense phase.
The name given to these electrons are that they are valence electrons or binding electrons as these are directly involved in chemical Bonding and allow for different compounds to be made.
Answer:
4
Explanation:
Ionization energy can be defined as the energy required for an atom to lose its valence electron to form an ion. Hence, it deals with how easily an atom would lose its electron and form an ion. As the valence electrons are lossless bound to the outermost shell, they can easily be lost without much problem or better still they can be lost easily. Hence, the energy change here is small and thus we can conclude that the ionization energy here is low.
The electron affinity works quite differently from the ionization energy. It deals with the way in which a neutral atom attracts an electron to form an ion. For an electron with loose valence electrons, the sure fact is that it does not really need these electrons. Hence, there is no need for an high electron affinity on its part. Thus, we conclude that the electron affinity is also low
Answer:
1. 1568 J
2. 0 J
3. 1176 J
Explanation:
PE = mgh
(PE = Potential Energy) = (m = mass)(g = gravitational force which is 9.8)(h = height)
1. (3)(9.8)(20) = 1568 J
2. PE = (3)(9.8)(0) = 0 J
3. (5)(9.8)(24) = 1176 J