Answer:
0.49 mol
Explanation:
Step 1: Write the balanced equation
Mg + 2 HCI ⇒ MgCl₂ + H₂
Step 2: Calculate the moles corresponding to 12 g of Mg
The molar mass of Mg is 24.31 g/mol.

Step 3: Calculate the moles of H₂ produced by 0.49 moles of Mg
The molar ratio of Mg to H₂ is 1:1. The moles of H₂ produced are 1/1 × 0.49 mol = 0.49 mol.
Answer:
substance
Explanation:
A pure substance is a form of matter that has a constant composition (meaning it's the same everywhere) and properties that are constant throughout the sample (meaning there is only one set of properties such as melting point, color, boiling point, etc
Answer:
1.7 ppm
Explanation:
Original amount N' = 2.6 ppm
time to testing t = 24 hr
final amount N = 2.1 ppm
Using exponential inhibited decay, we have
N = N'e^(-kt)
Where
N is the new reading
N' is the original reading
t is the decay time
k is the decay constant
Substituting, we have
2.1 = 2.6 x e^(-k x 24)
2.1 = 2.6 x e^(-24k)
0.808 = e^(-24k)
We take the natural log of both sides of the equation
Ln 0.808 = Ln (e^(-24k))
-0.213 = - 24k
K = 0.213/24 = 0.00886
After 48 hrs, the reading of free chlorine will be
N = 2.6 x e^(-0.00886 x 48)
N = 2.6 x e^(-0.425)
N = 2.6 x 0.654
N = 1.7 ppm
the molar mass is how many grams it takes to make a full mole. The number in carbon 12 tells us that it takes 12 g to makes a mole, so one half of that would be <u><em>option d, 0.5</em></u>.
D.) Balanced equation is Zn + 2HBr - - - > ZnBr2 + H2.