Answer:


Explanation:
The period of the comet is the time it takes to do a complete orbit:
T=1951-(-563)=2514 years
writen in seconds:

Since the eccentricity is greater than 0 but lower than 1 you can know that the trajectory is an ellipse.
Therefore, if the mass of the sun is aprox. 1.99e30 kg, and you assume it to be much larger than the mass of the comet, you can use Kepler's law of periods to calculate the semimajor axis:
![T^2=\frac{4\pi^2}{Gm_{sun}}a^3\\ a=\sqrt[3]{\frac{Gm_{sun}T^2}{4\pi^2} } \\a=1.50*10^{6}m](https://tex.z-dn.net/?f=T%5E2%3D%5Cfrac%7B4%5Cpi%5E2%7D%7BGm_%7Bsun%7D%7Da%5E3%5C%5C%20a%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGm_%7Bsun%7DT%5E2%7D%7B4%5Cpi%5E2%7D%20%7D%20%5C%5Ca%3D1.50%2A10%5E%7B6%7Dm)
Then, using the law of orbits, you can calculate the greatest distance from the sun, which is called aphelion:

Answer:
the internal energy of the mixture at final state = 238kJ/kg
Explanation:
Given
V= 0.6m³
m=5kg
R=0.287kJ/kg.K
T=320 K
from ideal gas equation
PV = nRT
where P is pressure, V is volume, n is number of mole, R is ideal gas constant , T is the temperature.
Recall, mole = mass/molar mass
attached is calculation of the question.
Answer:
everyone else does this to me so lol
Explanation:
Proton : 0.00000000000000000000000161726
Electron : 0.00000000000000000000000000091093
Take them away =
1.616349e−24
(that's what it gave me on the calculator when I did proton - electron)