Answer:
Explanation:
When the positively charged half shell is brought in contact with the electroscope, its needle deflects due to charge present on the shell.
When the negatively charged half shell is brought in contact with the positively charged shell , the positive and negative charge present on each shell neutralises each other .So both the shells lose their charges .The positive half shell also loses all its charges
When we separate the half shells , there will be no deflection in the electroscope because both the shell have already lost their charges and they have become neutral bodies . So they will not be able to produce any deflection in the electroscope.
Work = Force x Distance = 500 x 4 = 2000 Nm = 2000 J
Answer:
The maximum current, in amperes, that a conductor can carry continuously under the conditions of abuse without exceeding its temperature rating.
O.99 m long .simple pendulum time period is 2s for second formula then use formula T=2pi.rt(lenght/gravity)
Answer:
The fraction fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for 3.0 time constants is
Explanation:
From the question we are told that
The time constant
The potential across the capacitor can be mathematically represented as
Where is the voltage of the capacitor when it is fully charged
So at
Generally energy stored in a capacitor is mathematically represented as
In this equation the energy stored is directly proportional to the the square of the potential across the capacitor
Now since capacitance is constant at
The energy stored can be evaluated at as
Hence the fraction of the energy stored in an initially uncharged capacitor is