<u>Answer:</u> In a chemical reaction, the total mass of the particles in the system stays the same
<u>Explanation:</u>
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side in a chemical reaction.
Every balanced chemical reaction follows law of conservation of mass.
<u>For Example:</u> Formation of water molecule

Total mass on reactant side = ![[2(2\times 1)+(2\times 16)]=36g/mol](https://tex.z-dn.net/?f=%5B2%282%5Ctimes%201%29%2B%282%5Ctimes%2016%29%5D%3D36g%2Fmol)
Total mass on product side = ![[2((2\times 1)+16)]=36g/mol](https://tex.z-dn.net/?f=%5B2%28%282%5Ctimes%201%29%2B16%29%5D%3D36g%2Fmol)
Hence, in a chemical reaction, the total mass of the particles in the system stays the same
Answer:
denotes the molar hydrogen ion concentration
Explanation:
http://www.atnf.csiro.au/outreach/education/senior/cosmicengine/stars_hrdiagram.html. This will give u the answer, just go to link
Answer:
The new pressure is 0.5 atm
Explanation:
Step 1: Data given
Volume of oxygen = 300 mL = 0.300 L
Pressure = 1.00 atm
Temperature = 300 K
The volume increases to 1000mL = 1.00 L
The temperature increases to 500 K
Step 2: Calculate the new pressure
(P1*V1)/T1 = (P2*V2)/T2
⇒with P1 = the initial pressure = 1.00 atm
⇒with V1 = the initial volume = 0.300 L
⇒with T1 = the initial temperature = 300 K
⇒with P2 = the new pressure = TO BE DETERMINED
⇒with V2 = the increased volume = 1.00 L
⇒with T2 = the increased temperature = 500 K
(1.00 atm* 0.300 L)/300 K = (P2 * 1.00L) / 500 K
P2 = (1.00 *0.300 * 500) / (300 *1.00)
P2 = 0.5 atm
The new pressure is 0.5 atm