Answer: Chemical composition modification (or, physical signal would be color).
Answer:
The ideal gas law is expressed mathematically by the ideal gas equation as follows;
P·V = n·R·T
Where;
P = The gas pressure
V = The volume of the gas
n = The number of moles of the gas present
R = The universal gas constant
T = The temperature of the gas
A situation where the ideal gas law is exhibited is in the atmosphere just before rainfall
The atmospheric temperature of the area expecting rainfall drops, (when there is appreciable blockage of the Sun's rays by cloud covering) followed by increased wind towards the area, which indicates that the area was in a state of a low pressure, 'P', and or volume, 'V', or a combination of both low pressure and volume P·V
When the entry flow of air into the area is observed to have reduced, the temperature of the air in the area is simultaneously sensed to have risen slightly, therefore, the combination of P·V is seen to be proportional to the temperature, 'T', and the number of moles of air particles, 'n' in the area
Explanation:
Explanation:
At the end of mitosis, the new daughter cells contain the same number of chromosomes as the parent cell. Mitosis enables cellular growth and repair in multicellular organisms.
Increasing order of strength needed to break bonds:
temporary dipole induced dipole interactions
Permanent dipole induced dipole interactions
Hydrogen bonding
Answer:
B. A body at rest will stay at rest until it is acted upon by another object
Explanation:
Newton's first law states that if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.