Answer: d :The blue and orange soccer balls; they have more mass than the black soccer ball, but changed speed by the same amount.
Im pretty sure that is true. but the oil will no longer be pure, as it was mixed with water.
Helium, neon,nitrogen and argon
<span>In physics WAVELENGTH IS THE DISTANCE BETWEEN REPEATING UNITS OF A PROPAGATING WAVE of a given frequency. It is commonly designated by the Greek letter lambda (λ). Examples of wave-like phenomena are light, water waves, and sound waves. The wavelength is related to the frequency by the formula: wavelength = wave speed / frequency. Wavelength is therefore inversely proportional to frequency. Higher frequencies have shorter wavelengths. Lower frequencies have longer wavelengths, assuming the speed of the wave is the same.</span>
Answer:
The new temperature of the nitrogen gas is 516.8 K or 243.8 C.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
You want to study two different states, an initial state and a final state. You have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment. By varying the temperature to a new value T2, then the pressure will change to P2, and the following will be fulfilled:

In this case:
- P1= 2 atm
- T1= 50 C= 323 K (being 0 C= 273 K)
- P2= 3.2 atm
- T2= ?
Replacing:

Solving:


T2= 516.8 K= 243.8 C
<u><em>The new temperature of the nitrogen gas is 516.8 K or 243.8 C.</em></u>