Answer: The value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.
Explanation:
Given: Moles of solute = 0.793 mol
Mass of solvent = 0.758

As molality is the number of moles of solute present in kg of solvent. Hence, molality of given solution is calculated as follows.

Now, the values of
is calculated as follows.

where,
i = Van't Hoff factor = 1 (for chloroform)
m = molality
= molal boiling point elevation constant
Substitute the values into above formula as follows.

Thus, we can conclude that the value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.
Answer:
The given statement is false.
Explanation:
- A common method of experimentation that is used to collect data on hypotheses of end up causing-effect is a contrast between two groups.
- One community, the experimental group, is receiving medication for having any result. Some other group becomes left exposed, the control group, whether creating a different treatment.
The atomic radius increases down a column (group) and decreases along a row
There are 2 electrons in the overlapping region.
Chlorine is the second member of the halogen group which are form of family of elements that resemble one another very closely.
The electronic configuration of chlorine shows the arrangement of chlorine electrons within it's atom.
At the outer most shell of the atom is seven electrons, therefore requires only one electron each to attain the octet arrangement.
The overlapping of the orbitals indicates the chemical bond formed by sharing of electrons between atoms called covalent bonding.
To complete it's outer most shell, it will need to share electron with another chlorine atom.
Therefore, there are 2 electrons in the overlapping region.
Learn more here:
brainly.com/question/16396974
Answer:

Explanation:
The Gibbs free energy in thermodynamics is a potential which is used to calculate maximum of the reversible work which is performed by a specific thermodynamic system at constant temperature (isothermal) as well as pressure (isobaric).
The expression for the change in free energy is:
